IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/6a9d1dc7-8fb6-48a1-b954-87e63d4bf7c7.html
   My bibliography  Save this paper

Advertising as a Reminder : Evidence from the Dutch State Lottery

Author

Listed:
  • He, Chen

    (Tilburg University, School of Economics and Management)

  • Klein, Tobias

    (Tilburg University, School of Economics and Management)

Abstract

Consumers who intend to buy a product may forget to do so because they suffer from limited attention. Therefore, they may value being reminded by an advertisement. This phenomenon could be important in many markets, but is usually difficult to document. We study it in the context of buying a product that has existed for almost 300 years: a ticket for the Dutch State Lottery. This context is particularly suitable for our analysis, because the product is simple, it is very well-known, and there are multiple fixed and known purchase cycles per year. Moreover, TV and radio advertisements are designed to explicitly remind consumers to buy a lottery ticket before the draw. This can conveniently be done online. We develop an approach to distinguish reminder effects of advertising from other effects, such as conveying information about the size of the jackpot. We use minute-level advertising and online sales data and find that the reminder effect of advertising is strong. Reaching one percent of the population leads to an increase in online sales of 1.7 percent in the first hour after the advertisement is aired. We also provide direct evidence that reminding consumers does not only affect the timing of purchases, but also leads to market expansion. Finally, we estimate a model of consumer behavior under limited attention to quantify the effect on total sales. We find that total sales would be 15.7 percent lower without the reminder effect of advertising and that shifting advertising to the week of the draw would lead to a 10.8 percent increase in sales.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • He, Chen & Klein, Tobias, 2018. "Advertising as a Reminder : Evidence from the Dutch State Lottery," Other publications TiSEM 6a9d1dc7-8fb6-48a1-b954-8, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:6a9d1dc7-8fb6-48a1-b954-87e63d4bf7c7
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/25867600/TILEC_2018_018.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kate Ho & Joseph Hogan & Fiona Scott Morton, 2017. "The impact of consumer inattention on insurer pricing in the Medicare Part D program," RAND Journal of Economics, RAND Corporation, vol. 48(4), pages 877-905, December.
    2. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    3. Paola Manzini & Marco Mariotti, 2014. "Stochastic Choice and Consideration Sets," Econometrica, Econometric Society, vol. 82(3), pages 1153-1176, May.
    4. Navdeep S. Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    5. Joo, Mingyu & Wilbur, Kenneth C. & Zhu, Yi, 2016. "Effects of TV advertising on keyword search," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 508-523.
    6. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    7. Seth Stephens-Davidowitz & Hal Varian & Michael D. Smith, 2017. "Super returns to Super Bowl ads?," Quantitative Marketing and Economics (QME), Springer, vol. 15(1), pages 1-28, March.
    8. Navdeep S. Sahni, 2015. "Erratum to: Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 249-250, September.
    9. Jura Liaukonyte & Thales Teixeira & Kenneth C. Wilbur, 2015. "Television Advertising and Online Shopping," Marketing Science, INFORMS, vol. 34(3), pages 311-330, May.
    10. Oleg Melnikov, 2013. "Demand For Differentiated Durable Products: The Case Of The U.S. Computer Printer Market," Economic Inquiry, Western Economic Association International, vol. 51(2), pages 1277-1298, April.
    11. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    12. Stefano DellaVigna & Matthew Gentzkow, 2010. "Persuasion: Empirical Evidence," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 643-669, September.
    13. Olivier De Groote & Frank Verboven, 2019. "Subsidies and Time Discounting in New Technology Adoption: Evidence from Solar Photovoltaic Systems," American Economic Review, American Economic Association, vol. 109(6), pages 2137-2172, June.
    14. Navdeep Sahni, 2015. "Erratum to: Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 249-250, September.
    15. Verboven, Frank & De Groote, Olivier, 2016. "Subsidies and Myopia in Technology Adoption: Evidence from Solar Photovoltaic Systems," CEPR Discussion Papers 11438, C.E.P.R. Discussion Papers.
    16. Michelle Sovinsky Goeree, 2008. "Limited Information and Advertising in the U.S. Personal Computer Industry," Econometrica, Econometric Society, vol. 76(5), pages 1017-1074, September.
    17. Daniel A. Ackerberg, 2003. "Advertising, learning, and consumer choice in experience good markets: an empirical examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(3), pages 1007-1040, August.
    18. Mark Armstrong & Robert Porter (ed.), 2007. "Handbook of Industrial Organization," Handbook of Industrial Organization, Elsevier, edition 1, volume 3, number 1.
    19. Ackerberg, Daniel A, 2001. "Empirically Distinguishing Informative and Prestige Effects of Advertising," RAND Journal of Economics, The RAND Corporation, vol. 32(2), pages 316-333, Summer.
    20. Deepa Chandrasekaran & Raji Srinivasan & Debika Sihi, 2018. "Effects of offline ad content on online brand search: insights from super bowl advertising," Journal of the Academy of Marketing Science, Springer, vol. 46(3), pages 403-430, May.
    21. Draganska, Michaela & Klapper, Daniel, 2010. "Choice Set Heterogeneity and the Role of Advertising: An Analysis with Micro and Macro Data," Research Papers 2063, Stanford University, Graduate School of Business.
    22. Bradley T. Shapiro & Günter J. Hitsch & Anna E. Tuchman, 2021. "TV Advertising Effectiveness and Profitability: Generalizable Results From 288 Brands," Econometrica, Econometric Society, vol. 89(4), pages 1855-1879, July.
    23. Nobuhiko Terui & Masataka Ban & Greg M. Allenby, 2011. "The Effect of Media Advertising on Brand Consideration and Choice," Marketing Science, INFORMS, vol. 30(1), pages 74-91, 01-02.
    24. Bradley T. Shapiro, 2018. "Positive Spillovers and Free Riding in Advertising of Prescription Pharmaceuticals: The Case of Antidepressants," Journal of Political Economy, University of Chicago Press, vol. 126(1), pages 381-437.
    25. Mingyu Joo & Kenneth C. Wilbur & Bo Cowgill & Yi Zhu, 2014. "Television Advertising and Online Search," Management Science, INFORMS, vol. 60(1), pages 56-73, January.
    26. Florian Heiss & Daniel McFadden & Joachim Winter & Amelie Wuppermann & Bo Zhou, 2021. "Inattention and Switching Costs as Sources of Inertia in Medicare Part D," American Economic Review, American Economic Association, vol. 111(9), pages 2737-2781, September.
    27. Jean-Pierre Dubé & Günter Hitsch & Puneet Manchanda, 2005. "An Empirical Model of Advertising Dynamics," Quantitative Marketing and Economics (QME), Springer, vol. 3(2), pages 107-144, June.
    28. Nitin Mehta & Xinlei (Jack) Chen & Om Narasimhan, 2008. "Informing, Transforming, and Persuading: Disentangling the Multiple Effects of Advertising on Brand Choice Decisions," Marketing Science, INFORMS, vol. 27(3), pages 334-355, 05-06.
    29. Bagwell, Kyle, 2007. "The Economic Analysis of Advertising," Handbook of Industrial Organization, in: Mark Armstrong & Robert Porter (ed.), Handbook of Industrial Organization, edition 1, volume 3, chapter 28, pages 1701-1844, Elsevier.
    30. Randall A. Lewis & Justin M. Rao, 2015. "The Unfavorable Economics of Measuring the Returns to Advertising," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1941-1973.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suppliet, Moritz, 2020. "Umbrella branding in pharmaceutical markets," Journal of Health Economics, Elsevier, vol. 73(C).
    2. He, Chen, 2018. "Essays on the role and effects of advertising," Other publications TiSEM 47a3272a-54f1-4a90-9714-c, Tilburg University, School of Economics and Management.
    3. Nils Wlömert & Dominik Papies & Michel Clement & Martin Spann, 2024. "Frontiers: The Interplay of User-Generated Content, Content Industry Revenues, and Platform Regulation: Quasi-Experimental Evidence from YouTube," Marketing Science, INFORMS, vol. 43(1), pages 1-12, January.
    4. Matthew McGranaghan & Jura Liaukonyte & Kenneth C. Wilbur, 2022. "How Viewer Tuning, Presence, and Attention Respond to Ad Content and Predict Brand Search Lift," Marketing Science, INFORMS, vol. 41(5), pages 873-895, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Chen, 2018. "Essays on the role and effects of advertising," Other publications TiSEM 47a3272a-54f1-4a90-9714-c, Tilburg University, School of Economics and Management.
    2. Wesley R. Hartmann & Daniel Klapper, 2018. "Super Bowl Ads," Marketing Science, INFORMS, vol. 37(1), pages 78-96, January.
    3. Weijia Dai & Hyunjin Kim & Michael Luca, 2023. "Frontiers: Which Firms Gain from Digital Advertising? Evidence from a Field Experiment," Marketing Science, INFORMS, vol. 42(3), pages 429-439, May.
    4. Stephan Seiler & Song Yao & Wenbo Wang, 2017. "Does Online Word of Mouth Increase Demand? (And How?) Evidence from a Natural Experiment," Marketing Science, INFORMS, vol. 36(6), pages 838-861, November.
    5. Landry, Peter, 2022. "Pricing, advertising, and endogenous consideration of an “insistent” product," International Journal of Industrial Organization, Elsevier, vol. 80(C).
    6. Suppliet, Moritz, 2020. "Umbrella branding in pharmaceutical markets," Journal of Health Economics, Elsevier, vol. 73(C).
    7. Ruichang Lu & Qiaowei Shen & Tenghui Wang & Xiaojun Zhang, 2022. "Frenemies: Corporate Advertising Under Common Ownership," Management Science, INFORMS, vol. 68(6), pages 4645-4669, June.
    8. Li, Xiaolin & Rao, Raghunath Singh & Narasimhan, Om & Gao, Xing, 2022. "Stay positive or go negative? Memory imperfections and messaging strategy," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 1127-1149.
    9. Li, Xiaolin & Singh Rao, Raghunath & Narasimhan, Om & Gao, Xing, 2022. "Stay positive or go negative? Memory imperfections and messaging strategy," LSE Research Online Documents on Economics 113556, London School of Economics and Political Science, LSE Library.
    10. Bart J. Bronnenberg & Jean-Pierre Dubé & Robert E. Sanders, 2020. "Consumer Misinformation and the Brand Premium: A Private Label Blind Taste Test," Marketing Science, INFORMS, vol. 39(2), pages 382-406, March.
    11. Brett R Gordon & Kinshuk Jerath & Zsolt Katona & Sridhar Narayanan & Jiwoong Shin & Kenneth C Wilbur, 2019. "Inefficiencies in Digital Advertising Markets," Papers 1912.09012, arXiv.org, revised Feb 2020.
    12. Griffith, Rachel & Dubois, Pierre & O'Connell, Martin, 2014. "The Effects of Banning Advertising on Demand, Supply and Welfare: Structural Estimation on a Junk Food Market," CEPR Discussion Papers 9942, C.E.P.R. Discussion Papers.
    13. Chadwick J. Miller & Daniel C. Brannon & Jim Salas & Martha Troncoza, 2021. "Advertising, incentives, and the upsell: how advertising differentially moderates customer- vs. retailer-directed price incentives’ impact on consumers’ preferences for premium products," Journal of the Academy of Marketing Science, Springer, vol. 49(6), pages 1043-1064, November.
    14. Simon P. Anderson & Federico Ciliberto & Jura Liaukonyte & Régis Renault, 2016. "Push-me pull-you: comparative advertising in the OTC analgesics industry," RAND Journal of Economics, RAND Corporation, vol. 47(4), pages 1029-1056, November.
    15. Omid Rafieian, 2023. "Optimizing User Engagement Through Adaptive Ad Sequencing," Marketing Science, INFORMS, vol. 42(5), pages 910-933, September.
    16. Garrett A. Johnson & Randall A. Lewis & David H. Reiley, 2017. "When Less Is More: Data and Power in Advertising Experiments," Marketing Science, INFORMS, vol. 36(1), pages 43-53, January.
    17. Ali Goli & Simha Mummalaneni & Pradeep K. Chintagunta & Sanjay K. Dhar, 2022. "Show and Sell: Studying the Effects of Branded Cigarette Product Placement in TV Shows on Cigarette Sales," Marketing Science, INFORMS, vol. 41(6), pages 1163-1180, November.
    18. Yi-Lin Tsai & Elisabeth Honka, 2021. "Informational and Noninformational Advertising Content," Marketing Science, INFORMS, vol. 40(6), pages 1030-1058, November.
    19. Brett R. Gordon & Robert Moakler & Florian Zettelmeyer, 2023. "Predictive Incrementality by Experimentation (PIE) for Ad Measurement," Papers 2304.06828, arXiv.org.
    20. Du, Ruihuan & Zhong, Yu & Nair, Harikesh S. & Cui, Bo & Shou, Ruyang, 2019. "Causally Driven Incremental Multi Touch Attribution Using a Recurrent Neural Network," Research Papers 3761, Stanford University, Graduate School of Business.

    More about this item

    JEL classification:

    • M37 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Advertising
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:6a9d1dc7-8fb6-48a1-b954-87e63d4bf7c7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.