IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

The Risk Return Relationship: Evidence from Index Return and Realised Variance Series

  • Minxian Yang

    ()

    (School of Economics, Australian School of Business, the University of New South Wales)

The risk return relationship is analysed in bivariate models for return and realised variance(RV) series. Based on daily time series from 21 international market indices for more than 13 years (January 2000 to February 2013), the empirical findings support the arguments of risk return tradeoff, volatility feedback and statistical balance. It is reasoned that the empirical risk return relationship is primarily shaped by two important data features: the negative contemporaneous correlation between the return and RV, and the difference in the autocorrelation structures of the return and RV.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://research.economics.unsw.edu.au/RePEc/papers/2014-16.pdf
Download Restriction: no

Paper provided by School of Economics, The University of New South Wales in its series Discussion Papers with number 2014-16.

as
in new window

Length: 32 pages
Date of creation: Mar 2014
Date of revision:
Handle: RePEc:swe:wpaper:2014-16
Contact details of provider: Postal:
Australian School of Business Building, Sydney 2052

Phone: (+61)-2-9385-3380
Fax: +61)-2- 9313- 6337
Web page: http://www.economics.unsw.edu.au/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, 09.
  2. Joann Jasiak & Christian Gourieroux, 2006. "Autoregressive gamma processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 129-152.
  3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  4. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
  5. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  6. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  7. Jianxin Wang & Minxian Yang, 2012. "On the Risk Return Relationship," Discussion Papers 2012-31, School of Economics, The University of New South Wales.
  8. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," CREATES Research Papers 2007-03, Department of Economics and Business Economics, Aarhus University.
  9. John M. Maheu & Thomas H. McCurdy, 2003. "News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns," CIRANO Working Papers 2003s-38, CIRANO.
  10. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
  11. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 10.
  12. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-87, September.
  13. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  14. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  15. Yang Minxian, 2011. "Volatility Feedback and Risk Premium in GARCH Models with Generalized Hyperbolic Distributions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-21, May.
  16. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
  17. David K. Backus & Allan W. Gregory, 1992. "Theoretical Relations Between Risk Premiums and Conditional Variances," Working Papers 92-18a, New York University, Leonard N. Stern School of Business, Department of Economics.
  18. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
  19. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
  20. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2014-16. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gabriele Gratton)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.