IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Graph-Based Search Procedure for Vector Autoregressive Models

  • Alessio Moneta
  • Peter Spirtes

Vector Autoregressions (VARs) are a class of time series models commonly used in econometrics to study the dynamic effect of exogenous shocks to the economy. While the estimation of a VAR is straightforward, there is a problem of finding the transformation of the estimated model consistent with the causal relations among the contemporaneous variables. Such problem, which is a version of what is called in econometrics “the problem of identification,” is faced in this paper using a semi-automated search procedure. The unobserved causal relations of the structural form, to be identified, are represented by a directed graph. Discovery algorithms are developed to infer features of the causal graph from tests on vanishing partial correlations among the VAR residuals. Such tests cannot be based on the usual tests of conditional independence, because of sampling problems due to the time series nature of the data. This paper proposes consistent tests on vanishing partial correlations based on the asymptotic distribution of the estimated VAR residuals. Two different types of search algorithm are considered. A first algorithm restricts the analysis to direct causation among the contemporaneous variables, a second algorithm allows the possibility of cycles (feedback loops) and common shocks among contemporaneous variables. Recovering the causal structure allows a reliable transformation of the estimated vector autoregressive model which is very useful for macroeconomic empirical investigations, such as comparing the effects of different shocks (real vs. nominal) on the economy and finding a measure of the monetary policy shock.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy in its series LEM Papers Series with number 2005/14.

in new window

Date of creation: 12 Jun 2005
Date of revision:
Handle: RePEc:ssa:lemwps:2005/14
Contact details of provider: Postal:
Piazza dei Martiri della Liberta, 33, 56127 Pisa

Phone: +39-50-883343
Fax: +39-50-883344
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Haigh, Michael S. & Bessler, David A., 2002. "Causality And Price Discovery: An Application Of Directed Acyclic Graphs," Working Papers 28588, University of Maryland, Department of Agricultural and Resource Economics.
  2. Alessio Moneta, 2003. "Graphical Models for Structural Vector Autoregressions," LEM Papers Series 2003/07, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  3. Glymour, Clark & Spirtes, Peter, 1988. "Latent variables, causal models and overidentifying constraints," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 175-198.
  4. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
  5. Ben S. Bernanke, 1986. "Alternative Explanations of the Money-Income Correlation," NBER Working Papers 1842, National Bureau of Economic Research, Inc.
  6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  7. Selva Demiralp & Kevin D. Hoover, 2003. "Searching for the Causal Structure of a Vector Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 745-767, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2005/14. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.