IDEAS home Printed from https://ideas.repec.org/p/sef/csefwp/235.html
   My bibliography  Save this paper

Kalai-Smorodinsky Bargaining Solution Equilibria

Author

Listed:

Abstract

Multicriteria games describe strategic interactions in which players, having more than one criterion to take into account, don't have an a-priori opinion on the rel- ative importance of all these criteria. Roemer (2005) introduces an organizational interpretation of the concept of equilibrium: each player can be viewed as running a bargaining game among criteria. In this paper, we analyze the bargaining problem within each player by considering the Kalai-Smorodinsky bargaining solution. We provide existence results for the so called Kalai-Smorodinsky bargaining solution equilibria for a general class of disagreement points which properly includes the one considered in Roemer (2005). Moreover we look at the refinement power of this equilibrium concept and show that it is an effective selection device even when combined with classical refinement concepts based on stability with respect to perturbations such as the the extension to multicriteria games of the Selten's (1975) trembling hand perfect equilibrium concept.

Suggested Citation

  • Giuseppe De Marco & Jacqueline Morgan, 2009. "Kalai-Smorodinsky Bargaining Solution Equilibria," CSEF Working Papers 235, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  • Handle: RePEc:sef:csefwp:235
    as

    Download full text from publisher

    File URL: http://www.csef.it/WP/wp235.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giuseppe De Marco & Jacqueline Morgan, 2007. "A Refinement Concept For Equilibria In Multicriteria Games Via Stable Scalarizations," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 169-181.
    2. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    3. Peter Borm & Freek van Megen & Stef Tijs, 1999. "A perfectness concept for multicriteria games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(3), pages 401-412, July.
    4. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    5. Roth, Alvin E., 1977. "Independence of irrelevant alternatives, and solutions to Nash's bargaining problem," Journal of Economic Theory, Elsevier, vol. 16(2), pages 247-251, December.
    6. Loridan, P. & Morgan, J. & Raucci, R., 1997. "Convergence of Minimal and Approximate Minimal Elements of Sets in Partially Ordered Vector Spaces," Papiers d'Economie Mathématique et Applications 97.94, Université Panthéon-Sorbonne (Paris 1).
    7. John Roemer, 2005. "Games with vector-valued payoffs and their application to competition between organizations," Economics Bulletin, AccessEcon, vol. 3(16), pages 1-13.
    8. Jacqueline Morgan, 2005. "Approximations and Well-Posedness in Multicriteria Games," Annals of Operations Research, Springer, vol. 137(1), pages 257-268, July.
    9. repec:spr:compst:v:49:y:1999:i:3:p:401-412 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:235. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lia Ambrosio). General contact details of provider: http://edirc.repec.org/data/cssalit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.