IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v46y2016i4d10.1007_s00355-015-0936-x.html
   My bibliography  Save this article

Bargaining, conditional consistency, and weighted lexicographic Kalai-Smorodinsky Solutions

Author

Listed:
  • Bram Driesen

    () (University of Glasgow, Adam Smith Business School)

Abstract

Abstract We reconsider the class of weighted Kalai-Smorodinsky solutions of Dubra (Econ Lett 73:131–136, 2001), and using methods of Imai (Econometrica 51:389–401, 1983), extend their characterization to the domain of multilateral bargaining problems. Aside from standard axioms in the literature, this result involves a new property that weakens the axiom Bilateral Consistency (Lensberg, J Econ Theory 45:330–341, 1988), by making the notion of consistency dependent on how ideal values in a reduced problem change relative to the original problem.

Suggested Citation

  • Bram Driesen, 2016. "Bargaining, conditional consistency, and weighted lexicographic Kalai-Smorodinsky Solutions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(4), pages 777-809, April.
  • Handle: RePEc:spr:sochwe:v:46:y:2016:i:4:d:10.1007_s00355-015-0936-x
    DOI: 10.1007/s00355-015-0936-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00355-015-0936-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomson,William & Lensberg,Terje, 2006. "Axiomatic Theory of Bargaining with a Variable Number of Agents," Cambridge Books, Cambridge University Press, number 9780521027038, April.
    2. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    3. Kalai, Ehud, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Econometrica, Econometric Society, vol. 45(7), pages 1623-1630, October.
    4. Mark A. Chen, 2000. "Individual monotonicity and the leximin solution," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(2), pages 353-365.
    5. Imai, Haruo, 1983. "Individual Monotonicity and Lexicographic Maxmin Solution," Econometrica, Econometric Society, vol. 51(2), pages 389-401, March.
    6. Chun, Youngsub & Thomson, William, 1992. "Bargaining problems with claims," Mathematical Social Sciences, Elsevier, vol. 24(1), pages 19-33, August.
    7. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    8. Peters, Hans & Tijs, Stef & Zarzuelo, Jose, 1994. "A reduced game property for the Kalai-Smorodinsky and egalitarian bargaining solutions," Mathematical Social Sciences, Elsevier, vol. 27(1), pages 11-18, February.
    9. Dubra, Juan, 2001. "An asymmetric Kalai-Smorodinsky solution," Economics Letters, Elsevier, vol. 73(2), pages 131-136, November.
    10. Roth, Alvin E., 1977. "Independence of irrelevant alternatives, and solutions to Nash's bargaining problem," Journal of Economic Theory, Elsevier, vol. 16(2), pages 247-251, December.
    11. Driesen, Bram, 2012. "Proportional concessions and the leximin solution," Economics Letters, Elsevier, vol. 114(3), pages 288-291.
    12. Thomson, William, 1994. "Cooperative models of bargaining," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 35, pages 1237-1284 Elsevier.
    13. Britz, Volker & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2010. "Non-cooperative support for the asymmetric Nash bargaining solution," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1951-1967, September.
    14. Bossert, Walter, 1993. "An alternative solution to bargaining problems with claims," Mathematical Social Sciences, Elsevier, vol. 25(3), pages 205-220, May.
    15. Chang, Chih & Liang, Meng-Yu, 1998. "A characterization of the lexicographic Kalai-Smorodinsky solution for n=3," Mathematical Social Sciences, Elsevier, vol. 35(3), pages 307-319, May.
    16. Anbarci, Nejat & Sun, Ching-jen, 2013. "Asymmetric Nash bargaining solutions: A simple Nash program," Economics Letters, Elsevier, vol. 120(2), pages 211-214.
    17. Laruelle, Annick & Valenciano, Federico, 2008. "Noncooperative foundations of bargaining power in committees and the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 63(1), pages 341-353, May.
    18. John C. Harsanyi & Reinhard Selten, 1972. "A Generalized Nash Solution for Two-Person Bargaining Games with Incomplete Information," Management Science, INFORMS, vol. 18(5-Part-2), pages 80-106, January.
    19. Chih Chang & Yan-An Hwang, 1999. "A characterization of the leximin solution of the bargaining problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(3), pages 395-400, July.
    20. repec:spr:compst:v:49:y:1999:i:3:p:395-400 is not listed on IDEAS
    21. Lensberg, Terje, 1988. "Stability and the Nash solution," Journal of Economic Theory, Elsevier, vol. 45(2), pages 330-341, August.
    22. Chun, Youngsub & Peters, Hans, 1991. "The lexicographic equal-loss solution," Mathematical Social Sciences, Elsevier, vol. 22(2), pages 151-161, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaume García-Segarra & Miguel Ginés-Vilar, 2013. "Stagnation proofness and individually monotonic bargaining solutions," Working Papers 2013/04, Economics Department, Universitat Jaume I, Castellón (Spain).

    More about this item

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:46:y:2016:i:4:d:10.1007_s00355-015-0936-x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.