IDEAS home Printed from https://ideas.repec.org/p/sce/scecf7/63.html

Approximating and Simulating the Real Business Cycle: Linear Quadratic Methods, Parameterized Expectations and Genetic Algorithms

Author

Listed:
  • John Duffy

    (University of Pittsburgh)

  • Paul D. McNelis

    (University of Georgetown)

Abstract

This paper compares three approximation methods for solving and simulating real business cycle models: linear quadratic (including log- linear quadratic) methods, the method of parameterized expectations, and the genetic algorithm. Linear quadratic (LQ), log-linear quadratic (log- LQ) and parameterized expectations (PE) methods are commonly used in numerical approximation and simulation of wide classes of real business cycle models. This papers examines what differences the genetic algorithm (GA) may turn up, as the volatility of the stochastic shocks and the relative risk parameter increase in value. Our results show that the GA either closely matches or outperforms the LQ, loq-LQ and PE for approximating an exact solution. For higher degrees of nonlinearity and stochastic volatility, the GA gives slightly different results than the LQ and PE methods. Our results suggest that the GA should at least compliment these approaches for approximating such models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • John Duffy & Paul D. McNelis, "undated". "Approximating and Simulating the Real Business Cycle: Linear Quadratic Methods, Parameterized Expectations and Genetic Algorithms," Computing in Economics and Finance 1997 63, Society for Computational Economics.
  • Handle: RePEc:sce:scecf7:63
    as

    Download full text from publisher

    File URL: http://bucky.stanford.edu/cef97/abstracts/duffy.html
    File Function: paper abstract
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf7:63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.