IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/255.html
   My bibliography  Save this paper

Recovering Local Volatility Functions Of Forward Libor Rates

Author

Listed:
  • Grace Kuan

    (University of Warwick)

Abstract

It is commonly observed in the market that implied volatilities of standard European options vary with strike levels and expiration dates. The former is usually referred to as volatility skew and the later is volatility term structure. The idea of implied pricing is to recover the dynamics of the underlying asset from market prices of liquid options prices and use the information to price and hedge less liquid products. In this paper, we apply implied pricing in the interest rate market and use market cap prices to back out the local volatility functions of the forward LIBOR rate processes. The recovered dynamics of forward LIBOR rates reveal the market's expectation toward interest rates and they can be used to price other exotic interest rate options.The implied pricing methods developed so far mainly focus on the application in the equity market and foreign exchange market. The complexity of implementing implied methods to interest rate options lies in the fact that, usually in interest rate models, both the infinitesimal drift and volatility of the interest rate process are unknown. To save the computation of the drift, we work with the framework of forward LIBOR rate model in [3] and [4], where only the local volatility functions need to be approximated. We use spline functional approach suggested by Coleman, Li and Verma [2] to recover the local volatility. It is assumed to be a function of the time and forward LIBOR rate and represented by the tensor product splines. Given this representation, we use finite difference methods to solve the partial differential equation satisfied by caplet prices. The parameters of the splines are found by fitting the market caplet prices. The advantage of using forward LIBOR rate model is, given the local volatility functions, the drifts of forward LIBOR rates under the spot LIBOR measure or terminal forward measure can be easily obtained for the one-factor model.The paper is organised as follows. Section 2 gives an overview to implied pricing methods developed in both equity market and interest rate market. In section 3, we will have a brief review to the forward LIBOR rate model and describe the numerical procedure to recover local volatilities. Section 4 includes two computation examples. In the first example, the market caplet prices are simulated with extended forward LIBOR model developed by Andersen and Andreasen [1]. It shows that the method is able to recover the constant elasticity variance volatility structure accurately. In the second example, the method is applied to the market data of three months GBP LIBOR cap prices. The recovered local volatility functions appear non-linear in both variables of time and forward LIBOR rates.

Suggested Citation

  • Grace Kuan, 2000. "Recovering Local Volatility Functions Of Forward Libor Rates," Computing in Economics and Finance 2000 255, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:255
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef00/papers/paper255.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.
    3. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    4. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    5. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    6. Dilip B. Madan & Frank Milne, 1994. "Contingent Claims Valued And Hedged By Pricing And Investing In A Basis," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 223-245.
    7. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(01), pages 91-115, March.
    10. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    11. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    12. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    13. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    14. Joshua Rosenberg, 1999. "Empirical Tests of Interest Rate Model Pricing Kernels," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-015, New York University, Leonard N. Stern School of Business-.
    15. Amin, Kaushik I. & Morton, Andrew J., 1994. "Implied volatility functions in arbitrage-free term structure models," Journal of Financial Economics, Elsevier, vol. 35(2), pages 141-180, April.
    16. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    17. Dilip B. Madan & Frank Milne, 1992. "Contingent Claims Valued and Hedged by Pricing and Investment in a Basis," Working Papers 868, Queen's University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:255. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.