IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2017_007.html
   My bibliography  Save this paper

The Turning Tide: How Energy has Driven the Transformation of the British Economy Since the Industrial Revolution

Author

Listed:
  • Frieling, Julius

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Madlener, Reinhard

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

Abstract

Since the Industrial Revolution, the economy of the UK has transformed from that of an industrial manufacturing giant to a service economy and a central hub for the financial sector. Energy and energy services derived from fossil fuels have played a key role as drivers behind this structural change. Using data from 1855—2015 on capital, labor, and energy in a CES production function, we show that during this period input factors were mostly gross complements. However, between 1960 and 1980, the elasticity of substitution of energy increased substantially, from around 0.7 to more than 2.4. These high elasticity estimates were not permanent, and this wave of change that characterized the transition has since dissipated. Elasticities have since returned to even lower values around 0.3, indicating that energy services which depend primarily on fossil fuel inputs, such as transportation, pose a serious limit to the efficacy of efforts aimed at reducing fossil fuel consumption.

Suggested Citation

  • Frieling, Julius & Madlener, Reinhard, 2017. "The Turning Tide: How Energy has Driven the Transformation of the British Economy Since the Industrial Revolution," FCN Working Papers 7/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2017_007
    as

    Download full text from publisher

    File URL: http://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaaxooij
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Roger Fouquet, 2011. "Divergences in Long-Run Trends in the Prices of Energy and Energy Services," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 196-218, Summer.
    5. Hulten, Charles R, 1973. "Divisia Index Numbers," Econometrica, Econometric Society, vol. 41(6), pages 1017-1025, November.
    6. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2010. "Identifying the Elasticity of Substitution with Biased Technical Change," American Economic Review, American Economic Association, vol. 100(4), pages 1330-1357, September.
    7. Fuss, Melvyn & McFadden, Daniel, 1978. "Production Economics: A Dual Approach to Theory and Applications (II): Applications of the Theory of Production," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, volume 2, number fuss1978a.
    8. Roger Fouquet, 2014. "Editor's Choice Long-Run Demand for Energy Services: Income and Price Elasticities over Two Hundred Years," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 186-207.
    9. Apostolakis, Bobby E., 1990. "Energy--capital substitutability/ complementarity : The dichotomy," Energy Economics, Elsevier, vol. 12(1), pages 48-58, January.
    10. Miguel A. León-Ledesma & Peter McAdam & Alpo Willman, 2015. "Production Technology Estimates and Balanced Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 40-65, February.
    11. Robert S. Chirinko, 2008. "ó: The Long And Short Of It," CESifo Working Paper Series 2234, CESifo.
    12. Olivier de La Grandville & Rainer Klump, 2000. "Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions," American Economic Review, American Economic Association, vol. 90(1), pages 282-291, March.
    13. Fuss, Melvyn & McFadden, Daniel (ed.), 1978. "Production Economics: A Dual Approach to Theory and Applications," Elsevier Monographs, Elsevier, edition 1, number 9780444850133.
    14. Diamond, Peter & McFadden, Daniel & Rodriguez, Miguel, 1978. "Measurement of the Elasticity of Factor Substitution and Bias of Technical Change," Histoy of Economic Thought Chapters, in: Fuss, Melvyn & McFadden, Daniel (ed.),Production Economics: A Dual Approach to Theory and Applications, volume 2, chapter 5, McMaster University Archive for the History of Economic Thought.
    15. Jenne, C. A. & Cattell, R. K., 1983. "Structural change and energy efficiency in industry," Energy Economics, Elsevier, vol. 5(2), pages 114-123, April.
    16. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    17. Temple, Jonathan, 2012. "The calibration of CES production functions," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 294-303.
    18. Henningsen, Arne & Henningsen, Géraldine, 2012. "On estimation of the CES production function—Revisited," Economics Letters, Elsevier, vol. 115(1), pages 67-69.
    19. Frieling, Julius & Madlener, Reinhard, 2016. "Estimation of Substitution Elasticities in Three-Factor Production Functions: Identifying the Role of Energy," FCN Working Papers 1/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Sep 2016.
    20. Frieling, Julius & Madlener, Reinhard, 2017. "Fueling the US Economy: Energy as a Production Factor from the Great Depression until Today," FCN Working Papers 2/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    21. Fuss, Melvyn & McFadden, Daniel, 1978. "Production Economics: A Dual Approach to Theory and Applications (I): The Theory of Production," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, volume 1, number fuss1978.
    22. Fouquet, Roger, 2014. "Long run demand for energy services: income and price elasticities over two hundred years," LSE Research Online Documents on Economics 59070, London School of Economics and Political Science, LSE Library.
    23. Berndt, Ernst R & Wood, David O, 1979. "Engineering and Econometric Interpretations of Energy-Capital Complementarity," American Economic Review, American Economic Association, vol. 69(3), pages 342-354, June.
    24. Rainer Klump & Peter McAdam & Alpo Willman, 2007. "Factor Substitution and Factor-Augmenting Technical Progress in the United States: A Normalized Supply-Side System Approach," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 183-192, February.
    25. Chirinko, Robert S., 2008. "[sigma]: The long and short of it," Journal of Macroeconomics, Elsevier, vol. 30(2), pages 671-686, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.
    2. Hendrik Schmitz and Reinhard Madlener, 2020. "Direct and Indirect Energy Rebound Effects in German Households: A Linearized Almost Ideal Demand System Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 89-118.
    3. Heesen, Florian & Madlener, Reinhard, 2021. "Revisiting heat energy consumption modeling: Household production theory applied to field experimental data," Energy Policy, Elsevier, vol. 158(C).
    4. Specht, Jan Martin & Madlener, Reinhard, 2018. "Business Models for Energy Suppliers Aggregating Flexible Distributed Assets and Policy Issues Raised," FCN Working Papers 7/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Höwer, Daniel & Oberst, Christian A. & Madlener, Reinhard, 2017. "Regionalization Heuristic to Map Spatial Heterogeneity of Macroeconomic Impacts: The Case of the Green Energy Transition in NRW," FCN Working Papers 13/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Feb 2019.
    6. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth G. Stewart & Jiang Li, 2018. "Are factor biases and substitution identifiable? The Canadian evidence," Canadian Journal of Economics, Canadian Economics Association, vol. 51(2), pages 528-548, May.
    2. Daan Steenkamp, 2018. "Factor Substitution and Productivity in New Zealand," The Economic Record, The Economic Society of Australia, vol. 94(304), pages 64-79, March.
    3. Frieling, Julius & Madlener, Reinhard, 2017. "Fueling the US Economy: Energy as a Production Factor from the Great Depression until Today," FCN Working Papers 2/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    4. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    5. Gechert, Sebastian & Havranek, Tomas & Irsova, Zuzana & Kolcunova, Dominika, 2019. "Death to the Cobb-Douglas Production Function? A Quantitative Survey of the Capital-Labor Substitution Elasticity," EconStor Preprints 203136, ZBW - Leibniz Information Centre for Economics.
    6. Trenczek, Jan & Wacker, Konstantin M., 2023. "Human Capital Misallocation and Output per Worker Differences: Beyond Cobb-Douglas," GLO Discussion Paper Series 1331, Global Labor Organization (GLO).
    7. Knoblach, Michael & Rößler, Martin & Zwerschke, Patrick, 2016. "The Elasticity of Factor Substitution Between Capital and Labor in the U.S. Economy: A Meta-Regression Analysis," CEPIE Working Papers 03/16, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    8. Saam, Marianne, 2014. "The identification of directed technical change revisited," ZEW Discussion Papers 14-127, ZEW - Leibniz Centre for European Economic Research.
    9. Agustin Velasquez, 2023. "Production Technology, Market Power, and the Decline of the Labor Share," IMF Working Papers 2023/032, International Monetary Fund.
    10. Kenneth G. Stewart & Jiang Li, 2018. "Are factor biases and substitution identifiable? The Canadian evidence," Canadian Journal of Economics, Canadian Economics Association, vol. 51(2), pages 528-548, May.
    11. Kenneth G. Stewart, 2018. "Normalized CES supply systems: Replication of Klump, McAdam, and Willman (2007)," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(2), pages 290-296, March.
    12. Chen, Xi, 2017. "Biased Technical Change, Scale, And Factor Substitution In U.S. Manufacturing Industries," Macroeconomic Dynamics, Cambridge University Press, vol. 21(2), pages 488-514, March.
    13. Kander, Astrid & Stern, David I., 2014. "Economic growth and the transition from traditional to modern energy in Sweden," Energy Economics, Elsevier, vol. 46(C), pages 56-65.
    14. Cantore, C. & Levine, P., 2012. "Getting normalization right: Dealing with ‘dimensional constants’ in macroeconomics," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1931-1949.
    15. Frieling, Julius & Madlener, Reinhard, 2016. "Estimation of Substitution Elasticities in Three-Factor Production Functions: Identifying the Role of Energy," FCN Working Papers 1/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Sep 2016.
    16. Judzik, Dario & Sala, Hector, 2015. "The determinants of capital intensity in Japan and the US," Journal of the Japanese and International Economies, Elsevier, vol. 35(C), pages 78-98.
    17. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
    18. Jan Trenczek & Konstantin M. Wacker, 2023. "Accounting for cross-country output differences: A sectoral CES perspective," Working Papers 2023.09, International Network for Economic Research - INFER.
    19. Michael Knoblach & Martin Roessler & Patrick Zwerschke, 2020. "The Elasticity of Substitution Between Capital and Labour in the US Economy: A Meta‐Regression Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(1), pages 62-82, February.
    20. James Bessen, 2008. "Accounting for Productivity Growth When Technical Change is Biased," Working Papers 0802, Research on Innovation.

    More about this item

    Keywords

    Elasticity of substitution; Energy inputs; Aggregate Production; Industrialization; Structural change;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E13 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Neoclassical
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • N10 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - General, International, or Comparative
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2017_007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.