IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2014_025.html
   My bibliography  Save this paper

Technology Acceptance as Part of the Energy Performance Gap in Energy-Efficient Retrofitted Dwellings

Author

Listed:
  • Heesen, Florian

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Madlener, Reinhard

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

Abstract

This paper separates technological from human capabilities with regard to the operating of advanced heating systems. Our study shows that attitudes towards using such systems are equally influenced by a system's ease of use and its related thermal comfort as perceived by the user. However, the user does not perceive either of these influences directly; they are both mediated through the latent construct “perceived usefulness”. Our results reveal that in order to maximize the technology acceptance of advanced heating systems, the focus of interventions needs to be a twofold one. It is not only perceived thermal comfort – in its technological capacity of a delivered energy service – which is relevant; an easy-to-use system is equally important. The underlying psychological theory of this paper is that of the Theory of Planned Behavior (TPB). Using an adapted version of the technology acceptance model (TAM) – the energy TAM (eTAM) – we draw on questionnaire data from a field experiment conducted in Germany. The statistical inference is based on a partial least squares patch modeling (PLS-PM) approach.

Suggested Citation

  • Heesen, Florian & Madlener, Reinhard, 2016. "Technology Acceptance as Part of the Energy Performance Gap in Energy-Efficient Retrofitted Dwellings," FCN Working Papers 25/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2014_025
    as

    Download full text from publisher

    File URL: http://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaaqvjyi
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    2. Madlener, Reinhard & Hauertmann, Maximilian, 2011. "Rebound Effects in German Residential Heating: Do Ownership and Income Matter?," FCN Working Papers 2/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Schipper, Lee, 1979. "Another Look at Energy Conservation," American Economic Review, American Economic Association, vol. 69(2), pages 362-368, May.
    4. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    5. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    6. Keirstead, James, 2006. "Evaluating the applicability of integrated domestic energy consumption frameworks in the UK," Energy Policy, Elsevier, vol. 34(17), pages 3065-3077, November.
    7. Herman Wold, 1980. "Model Construction and Evaluation When Theoretical Knowledge Is Scarce," NBER Chapters, in: Evaluation of Econometric Models, pages 47-74, National Bureau of Economic Research, Inc.
    8. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    9. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    10. Kronenberg, Tobias, 2009. "The impact of demographic change on energy use and greenhouse gas emissions in Germany," Ecological Economics, Elsevier, vol. 68(10), pages 2637-2645, August.
    11. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    12. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    13. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    14. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    15. Broman Toft, Madeleine & Schuitema, Geertje & Thøgersen, John, 2014. "Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology," Applied Energy, Elsevier, vol. 134(C), pages 392-400.
    16. Van Raaij, W. Fred & Verhallen, Theo M. M., 1983. "A behavioral model of residential energy use," Journal of Economic Psychology, Elsevier, vol. 3(1), pages 39-63.
    17. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    18. Reinartz, Werner & Haenlein, Michael & Henseler, Jörg, 2009. "An empirical comparison of the efficacy of covariance-based and variance-based SEM," International Journal of Research in Marketing, Elsevier, vol. 26(4), pages 332-344.
    19. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eka Sudarmaji & Sri Ambarwati & Mira Munira, 2022. "Measurement of the Rebound Effect on Urban Household Energy Consumption Savings," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 88-100, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santarius, Tilman & Soland, Martin, 2018. "How Technological Efficiency Improvements Change Consumer Preferences: Towards a Psychological Theory of Rebound Effects," Ecological Economics, Elsevier, vol. 146(C), pages 414-424.
    2. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
    3. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    5. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    6. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    7. Blum, Bianca & Hübner, Julian & Milde, Adrian & Neumärker, Karl Justus Bernhard, 2018. "On the evidence of rebound effects in the lighting sector: Implications for promoting LED lighting," The Constitutional Economics Network Working Papers 05-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    8. Blum, Bianca & Hübner, Julian & Müller, Sarah & Neumärker, Karl Justus Bernhard, 2018. "Challenges for sustainable environmental policy: Influencing factors of the rebound effect in energy efficiency improvements," The Constitutional Economics Network Working Papers 02-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    9. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    10. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    11. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    12. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    13. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    14. Halvorsen, Bente & Larsen, Bodil Merethe, 2021. "Identifying drivers for the direct rebound when energy efficiency is unknown. The importance of substitution and scale effects," Energy, Elsevier, vol. 222(C).
    15. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    16. Arno E. Scheepens & Joost G. Vogtländer, 2018. "Insulation or Smart Temperature Control for Domestic Heating: A Combined Analysis of the Costs, the Eco-Costs, the Customer Perceived Value, and the Rebound Effect of Energy Saving," Sustainability, MDPI, vol. 10(9), pages 1-24, September.
    17. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    18. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Stela Rubínová, 2011. "Reakce poptávky domácností po energii na zvyšování energetické účinnosti: teorie a její důsledky pro konstrukci empiricky ověřitelných modelů [Reaction of Household Energy Demand to Improvements in," Politická ekonomie, Prague University of Economics and Business, vol. 2011(3), pages 359-378.
    20. Vélez-Henao, Johan-Andrés & García-Mazo, Claudia-Maria & Freire-González, Jaume & Vivanco, David Font, 2020. "Environmental rebound effect of energy efficiency improvements in Colombian households," Energy Policy, Elsevier, vol. 145(C).
    21. Cédric Gossart, 2015. "Rebound effects and ICT : a review of the literature," Post-Print hal-01258112, HAL.

    More about this item

    Keywords

    heat energy consumption; technology acceptance; rebound effect; perceived utility;
    All these keywords.

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2014_025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.