IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2014_025.html
   My bibliography  Save this paper

Technology Acceptance as Part of the Energy Performance Gap in Energy-Efficient Retrofitted Dwellings

Author

Listed:
  • Heesen, Florian

    () (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Madlener, Reinhard

    () (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

Abstract

This paper separates technological from human capabilities with regard to the operating of advanced heating systems. Our study shows that attitudes towards using such systems are equally influenced by a system's ease of use and its related thermal comfort as perceived by the user. However, the user does not perceive either of these influences directly; they are both mediated through the latent construct “perceived usefulness”. Our results reveal that in order to maximize the technology acceptance of advanced heating systems, the focus of interventions needs to be a twofold one. It is not only perceived thermal comfort – in its technological capacity of a delivered energy service – which is relevant; an easy-to-use system is equally important. The underlying psychological theory of this paper is that of the Theory of Planned Behavior (TPB). Using an adapted version of the technology acceptance model (TAM) – the energy TAM (eTAM) – we draw on questionnaire data from a field experiment conducted in Germany. The statistical inference is based on a partial least squares patch modeling (PLS-PM) approach.

Suggested Citation

  • Heesen, Florian & Madlener, Reinhard, 2016. "Technology Acceptance as Part of the Energy Performance Gap in Energy-Efficient Retrofitted Dwellings," FCN Working Papers 25/2014, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2014_025
    as

    Download full text from publisher

    File URL: http://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaaqvjyi
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    2. Madlener, Reinhard & Hauertmann, Maximilian, 2011. "Rebound Effects in German Residential Heating: Do Ownership and Income Matter?," FCN Working Papers 2/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Schipper, Lee, 1979. "Another Look at Energy Conservation," American Economic Review, American Economic Association, vol. 69(2), pages 362-368, May.
    4. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    5. Keirstead, James, 2006. "Evaluating the applicability of integrated domestic energy consumption frameworks in the UK," Energy Policy, Elsevier, vol. 34(17), pages 3065-3077, November.
    6. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    7. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    8. Kronenberg, Tobias, 2009. "The impact of demographic change on energy use and greenhouse gas emissions in Germany," Ecological Economics, Elsevier, vol. 68(10), pages 2637-2645, August.
    9. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    10. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    11. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    12. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    13. Broman Toft, Madeleine & Schuitema, Geertje & Thøgersen, John, 2014. "Responsible technology acceptance: Model development and application to consumer acceptance of Smart Grid technology," Applied Energy, Elsevier, vol. 134(C), pages 392-400.
    14. Van Raaij, W. Fred & Verhallen, Theo M. M., 1983. "A behavioral model of residential energy use," Journal of Economic Psychology, Elsevier, vol. 3(1), pages 39-63.
    15. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    16. Reinartz, Werner & Haenlein, Michael & Henseler, Jörg, 2009. "An empirical comparison of the efficacy of covariance-based and variance-based SEM," International Journal of Research in Marketing, Elsevier, vol. 26(4), pages 332-344.
    17. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    heat energy consumption; technology acceptance; rebound effect; perceived utility;

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • R22 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Other Demand

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2014_025. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Hendrik Schmitz). General contact details of provider: http://edirc.repec.org/data/fceonde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.