IDEAS home Printed from https://ideas.repec.org/p/ris/ewikln/2021_001.html
   My bibliography  Save this paper

Network tariffs under different pricing schemes in a dynamically consistent framework

Author

Listed:
  • Jeddi, Samir

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI))

  • Sitzmann, Amelie

    (Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI))

Abstract

Adequately designed prices are essential to achieve efficient coordination between the electricity network and market participants. However, consumer prices comprise several, possibly distorting price components. In an analytical model, we examine different regulatory settings, consisting of alternative spot market pricing schemes and network tariff designs in a dynamic context. While a setting with zonal pricing and fixed network tariffs achieves the highest welfare, a deviation of either the pricing scheme or the network tariff design leads to inefficiencies. However, we show that two inefficiently designed price components can be better than one, especially if network tariffs correct for the static inefficiency of the pricing scheme. Besides the network tariff design, network operators must pay attention to the allocation of network costs. It affects spatial price signals and, therefore, the dynamic allocation of investment decisions. Considering these decisions in a dynamic framework increases the requirements for the configuration of network tariffs, especially with volume-based network tariffs.

Suggested Citation

  • Jeddi, Samir & Sitzmann, Amelie, 2021. "Network tariffs under different pricing schemes in a dynamically consistent framework," EWI Working Papers 2021-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  • Handle: RePEc:ris:ewikln:2021_001
    as

    Download full text from publisher

    File URL: https://www.ewi.uni-koeln.de/cms/wp-content/uploads/2021/01/EWI_WP_21-01_Network_tariffs_under_different_pricing_schemes_Jeddi_Sitzmann.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2020. "The economic consequences of electricity tariff design in a renewable energy era," Applied Energy, Elsevier, vol. 275(C).
    2. A. Mitchell Polinsky & Steven Shavell (ed.), 2007. "Handbook of Law and Economics," Handbook of Law and Economics, Elsevier, edition 1, volume 2, number 2.
    3. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    4. Ambrosius, Mirjam & Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2018. "Investment incentives for flexible demand options under different market designs," Energy Policy, Elsevier, vol. 118(C), pages 372-389.
    5. Joskow, Paul L., 2007. "Regulation of Natural Monopoly," Handbook of Law and Economics, in: A. Mitchell Polinsky & Steven Shavell (ed.), Handbook of Law and Economics, edition 1, volume 2, chapter 16, pages 1227-1348, Elsevier.
    6. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 278.
    7. Batlle, Carlos & Mastropietro, Paolo & Rodilla, Pablo, 2020. "Redesigning residual cost allocation in electricity tariffs: A proposal to balance efficiency, equity and cost recovery," Renewable Energy, Elsevier, vol. 155(C), pages 257-266.
    8. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    9. Gautier, Axel & Jacqmin, Julien & Poudou, Jean-Christophe, 2021. "Optimal grid tariffs with heterogeneous prosumers," Utilities Policy, Elsevier, vol. 68(C).
    10. Scott P. Burger, Christopher R. Knittel, Ignacio J. Perez-Arriaga, Ian Schneider, and Frederik vom Scheidt, 2020. "The Efficiency and Distributional Effects of Alternative Residential Electricity Rate Designs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Severin Borenstein & James B. Bushnell, 2022. "Do Two Electricity Pricing Wrongs Make a Right? Cost Recovery, Externalities, and Efficiency," American Economic Journal: Economic Policy, American Economic Association, vol. 14(4), pages 80-110, November.
    12. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2019. "Regionally differentiated network fees to affect incentives for generation investment," Energy, Elsevier, vol. 177(C), pages 487-502.
    13. Tangerås, Thomas & Wolak, Frank A., 2019. "Locational Marginal Network Tariffs for Intermittent Renewable Generation," Working Paper Series 1310, Research Institute of Industrial Economics.
    14. Tim Schittekatte and Leonardo Meeus, 2020. "Least-cost Distribution Network Tariff Design in Theory and Practice," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 119-156.
    15. A. Mitchell Polinsky & Steven Shavell (ed.), 2007. "Handbook of Law and Economics," Handbook of Law and Economics, Elsevier, edition 1, volume 1, number 1.
    16. R.A. Hakvoort & L.J. De Vries, 2002. "An economic assessment of congestion management methods for electricity transmission networks," Competition and Regulation in Network Industries, Intersentia, vol. 3(4), pages 425-467, September.
    17. Chao, Hung-po & Wilson, Robert, 2020. "Coordination of electricity transmission and generation investments," Energy Economics, Elsevier, vol. 86(C).
    18. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    19. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    20. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    21. Jörn C. Richstein & Seyed Saeed Hosseinioun, 2020. "Industrial Demand Response: How Network Tariffs and Regulation Do (Not) Impact Flexibility Provision in Electricity Markets and Reserves," Discussion Papers of DIW Berlin 1853, DIW Berlin, German Institute for Economic Research.
    22. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    23. Schittekatte, Tim & Momber, Ilan & Meeus, Leonardo, 2018. "Future-proof tariff design: Recovering sunk grid costs in a world where consumers are pushing back," Energy Economics, Elsevier, vol. 70(C), pages 484-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    2. Khan, Hafiz Anwar Ullah & Ünel, Burçin & Dvorkin, Yury, 2023. "Electricity Tariff Design via Lens of Energy Justice," Omega, Elsevier, vol. 117(C).
    3. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    4. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
    5. Hendam, Mohamed & Schittekatte, Tim & Abdel-Rahman, Mohamed & Kamh, Mohamed Zakaria, 2022. "Rethinking electricity rate design: Fostering the energy transition in North Africa," Energy Policy, Elsevier, vol. 169(C).
    6. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2019. "Regionally differentiated network fees to affect incentives for generation investment," Energy, Elsevier, vol. 177(C), pages 487-502.
    7. Hennig, Roman J. & Ribó-Pérez, David & de Vries, Laurens J. & Tindemans, Simon H., 2022. "What is a good distribution network tariff?—Developing indicators for performance assessment," Applied Energy, Elsevier, vol. 318(C).
    8. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    9. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).
    10. Helmuth Cremer & Firouz Gahvari, 2017. "Restoring Ramsey tax lessons to Mirrleesian tax settings: Atkinson–Stiglitz and Ramsey reconciled," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(1), pages 11-35, June.
    11. Lu, Qing & Zhang, Yufeng, 2022. "A multi-objective optimization model considering users' satisfaction and multi-type demand response in dynamic electricity price," Energy, Elsevier, vol. 240(C).
    12. Wolfgang Kerber & Julia Wendel, 2014. "Regulation of Network Sectors in the EU: A Federalist Perspective," MAGKS Papers on Economics 201422, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    13. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    14. Saebi, Javad & Ghasemi, Abolfazl & Hojjat, Mehrdad, 2022. "Design and implementation of a competitive framework for a day-ahead demand-response program in Iran," Utilities Policy, Elsevier, vol. 77(C).
    15. Catherine De La Robertie & Semyon Danilov, 2015. "Methods of Investment Management in the Russian Electricity Transmission Industry," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(1), pages 21-37.
    16. Bjørndal, Endre & Bjørndal, Mette & Cullmann, Astrid & Nieswand, Maria, 2018. "Finding the right yardstick: Regulation of electricity networks under heterogeneous environments," European Journal of Operational Research, Elsevier, vol. 265(2), pages 710-722.
    17. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
    18. Stede, Jan & Arnold, Karin & Dufter, Christa & Holtz, Georg & von Roon, Serafin & Richstein, Jörn C., 2020. "The role of aggregators in facilitating industrial demand response: Evidence from Germany," Energy Policy, Elsevier, vol. 147(C).
    19. Manuel de Villena, Miguel & Jacqmin, Julien & Fonteneau, Raphael & Gautier, Axel & Ernst, Damien, 2021. "Network tariffs and the integration of prosumers: The case of Wallonia," Energy Policy, Elsevier, vol. 150(C).
    20. Thomas Bue Bjørner & Jacob Victor Hansen & Astrid Fanger Jakobsen, 2021. "Price cap regulation and water quality," Journal of Regulatory Economics, Springer, vol. 60(2), pages 95-116, December.

    More about this item

    Keywords

    Network tariffs; network regulation; market design; pricing schemes; dynamic consistency; spatial investment incentives;
    All these keywords.

    JEL classification:

    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:ewikln:2021_001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sabine Williams (email available below). General contact details of provider: https://edirc.repec.org/data/ewikode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.