IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v125y2023ics014098832300364x.html
   My bibliography  Save this article

Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study

Author

Listed:
  • Morell-Dameto, Nicolás
  • Chaves-Ávila, José Pablo
  • Gómez San Román, Tomás
  • Schittekatte, Tim

Abstract

Electricity network charges are intended to recover network costs and adhere to economic efficiency and equity principles. Most network charges currently applied in real-world systems are merely focused on cost recovery, implicitly assuming inelastic customers. Although proposals for improved network tariff designs can be found in the literature, they are tested only for simplified small feeders. This paper reformulates a dynamic network tariff to implement it in a real-world electricity system. By adapting the proposed improved network tariff designs to manage large-scale layered networks and complex data sets, we address this gap in the literature. First, when considering the entire network, consumers and generators need to be clustered into subsystems by voltage levels, enabling to calculate the network utilization levels; this is the so-called cascade model. After, per voltage level, the network tariff needs to be computed. We focus on an advanced network tariff design that consists of forward-looking peak-coincident energy charges, which is symmetric for injections and withdrawals, a per-kWh component for energy losses, and fixed residual network charges. We illustrate that this network tariff incentivizes the shifting of flexible loads to off-peak hours and aligns individual customer incentives with expected system benefits, reducing future network investments. In addition, the symmetric nature of the proposed tariff enables a level playing field for distributed resources providing flexibility services. As demonstrated for Slovenia, the proposed formulation should be considered by regulators for implementation in real-world electricity systems.

Suggested Citation

  • Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
  • Handle: RePEc:eee:eneeco:v:125:y:2023:i:c:s014098832300364x
    DOI: 10.1016/j.eneco.2023.106866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832300364X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.106866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolás Morell Dameto & José Pablo Chaves-Ávila & Tomás Gómez San Román, 2020. "Revisiting Electricity Network Tariffs in a Context of Decarbonization, Digitalization, and Decentralization," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Brown, David P. & Sappington, David E.M., 2018. "On the role of maximum demand charges in the presence of distributed generation resources," Energy Economics, Elsevier, vol. 69(C), pages 237-249.
    3. Ibtihal Abdelmotteleb & Tomás Gómez & Javier Reneses, 2017. "Evaluation Methodology for Tariff Design under Escalating Penetrations of Distributed Energy Resources," Energies, MDPI, vol. 10(6), pages 1-16, June.
    4. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    5. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    6. Nijhuis, M. & Gibescu, M. & Cobben, J.F.G., 2017. "Analysis of reflectivity & predictability of electricity network tariff structures for household consumers," Energy Policy, Elsevier, vol. 109(C), pages 631-641.
    7. Young, Sharon & Bruce, Anna & MacGill, Iain, 2019. "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, Elsevier, vol. 128(C), pages 616-627.
    8. Batlle, Carlos & Mastropietro, Paolo & Rodilla, Pablo, 2020. "Redesigning residual cost allocation in electricity tariffs: A proposal to balance efficiency, equity and cost recovery," Renewable Energy, Elsevier, vol. 155(C), pages 257-266.
    9. Michael G. Pollitt, 2018. "Electricity Network Charging in the Presence of Distributed Energy Resources: Principles, Problems and Solutions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    10. Hennig, Roman J. & Ribó-Pérez, David & de Vries, Laurens J. & Tindemans, Simon H., 2022. "What is a good distribution network tariff?—Developing indicators for performance assessment," Applied Energy, Elsevier, vol. 318(C).
    11. Scott P. Burger, Christopher R. Knittel, Ignacio J. Perez-Arriaga, Ian Schneider, and Frederik vom Scheidt, 2020. "The Efficiency and Distributional Effects of Alternative Residential Electricity Rate Designs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    12. Hendam, Mohamed & Schittekatte, Tim & Abdel-Rahman, Mohamed & Kamh, Mohamed Zakaria, 2022. "Rethinking electricity rate design: Fostering the energy transition in North Africa," Energy Policy, Elsevier, vol. 169(C).
    13. Tim Schittekatte and Leonardo Meeus, 2020. "Least-cost Distribution Network Tariff Design in Theory and Practice," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 119-156.
    14. Cossent, Rafael & Gómez, Tomás & Frías, Pablo, 2009. "Towards a future with large penetration of distributed generation: Is the current regulation of electricity distribution ready? Regulatory recommendations under a European perspective," Energy Policy, Elsevier, vol. 37(3), pages 1145-1155, March.
    15. Simshauser, Paul, 2016. "Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs," Energy Economics, Elsevier, vol. 54(C), pages 108-122.
    16. Frank J. Convery & Kristina Mohlin & Elisheba Spiller, 2017. "Policy Brief—Designing Electric Utility Rates: Insights on Achieving Efficiency, Equity, and Environmental Goals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 156-164.
    17. Passey, Robert & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2017. "Designing more cost reflective electricity network tariffs with demand charges," Energy Policy, Elsevier, vol. 109(C), pages 642-649.
    18. Abdelmotteleb, Ibtihal & Gómez, Tomás & Chaves Ávila, José Pablo & Reneses, Javier, 2018. "Designing efficient distribution network charges in the context of active customers," Applied Energy, Elsevier, vol. 210(C), pages 815-826.
    19. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    20. Rodri­guez Ortega, Mari­a Pi­a & Pérez-Arriaga, J. Ignacio & Abbad, Juan Rivier & González, Jesús Peco, 2008. "Distribution network tariffs: A closed question?," Energy Policy, Elsevier, vol. 36(5), pages 1712-1725, May.
    21. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    22. Miguel Manuel de Villena & Raphael Fonteneau & Axel Gautier & Damien Ernst, 2019. "Evaluating the Evolution of Distribution Networks under Different Regulatory Frameworks with Multi-Agent Modelling," Energies, MDPI, vol. 12(7), pages 1-15, March.
    23. Freier, Julia & von Loessl, Victor, 2022. "Dynamic electricity tariffs: Designing reasonable pricing schemes for private households," Energy Economics, Elsevier, vol. 112(C).
    24. Schittekatte, Tim & Momber, Ilan & Meeus, Leonardo, 2018. "Future-proof tariff design: Recovering sunk grid costs in a world where consumers are pushing back," Energy Economics, Elsevier, vol. 70(C), pages 484-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    2. Nicolás Morell Dameto & José Pablo Chaves-Ávila & Tomás Gómez San Román, 2020. "Revisiting Electricity Network Tariffs in a Context of Decarbonization, Digitalization, and Decentralization," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).
    4. Avau, Michiel & Govaerts, Niels & Delarue, Erik, 2021. "Impact of distribution tariffs on prosumer demand response," Energy Policy, Elsevier, vol. 151(C).
    5. Hendam, Mohamed & Schittekatte, Tim & Abdel-Rahman, Mohamed & Kamh, Mohamed Zakaria, 2022. "Rethinking electricity rate design: Fostering the energy transition in North Africa," Energy Policy, Elsevier, vol. 169(C).
    6. Manuel de Villena, Miguel & Jacqmin, Julien & Fonteneau, Raphael & Gautier, Axel & Ernst, Damien, 2021. "Network tariffs and the integration of prosumers: The case of Wallonia," Energy Policy, Elsevier, vol. 150(C).
    7. Niels Govaerts & Kenneth Bruninx & Hélène Le Cadre & Leonardo Meeus & Erik Delarue, 2021. "Forward-looking distribution network charges considering lumpy investments," Journal of Regulatory Economics, Springer, vol. 59(3), pages 280-302, June.
    8. Askeland, Magnus & Backe, Stian & Bjarghov, Sigurd & Korpås, Magnus, 2021. "Helping end-users help each other: Coordinating development and operation of distributed resources through local power markets and grid tariffs," Energy Economics, Elsevier, vol. 94(C).
    9. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    10. Saumweber, Andrea & Wederhake, Lars & Cardoso, Gonçalo & Fridgen, Gilbert & Heleno, Miguel, 2021. "Designing Pareto optimal electricity retail rates when utility customers are prosumers," Energy Policy, Elsevier, vol. 156(C).
    11. Hennig, Roman J. & Ribó-Pérez, David & de Vries, Laurens J. & Tindemans, Simon H., 2022. "What is a good distribution network tariff?—Developing indicators for performance assessment," Applied Energy, Elsevier, vol. 318(C).
    12. Bovera, Filippo & Delfanti, Maurizio & Fumagalli, Elena & Lo Schiavo, Luca & Vailati, Riccardo, 2021. "Regulating electricity distribution networks under technological and demand uncertainty," Energy Policy, Elsevier, vol. 149(C).
    13. Beaufils, Timothé & Pineau, Pierre-Olivier, 2019. "Assessing the impact of residential load profile changes on electricity distribution utility revenues under alternative rate structures," Utilities Policy, Elsevier, vol. 61(C).
    14. Govaerts, Niels & Bruninx, Kenneth & Le Cadre, Hélène & Meeus, Leonardo & Delarue, Erik, 2019. "Spillover effects of distribution grid tariffs in the internal electricity market: An argument for harmonization?," Energy Economics, Elsevier, vol. 84(C).
    15. Spiller, Elisheba & Esparza, Ricardo & Mohlin, Kristina & Tapia-Ahumada, Karen & Ünel, Burçin, 2023. "The role of electricity tariff design in distributed energy resource deployment," Energy Economics, Elsevier, vol. 120(C).
    16. Darghouth, Naïm R. & Barbose, Galen & Zuboy, Jarett & Gagnon, Pieter J. & Mills, Andrew D. & Bird, Lori, 2020. "Demand charge savings from solar PV and energy storage," Energy Policy, Elsevier, vol. 146(C).
    17. Simeone, Christina E. & Gagnon, Pieter & Cappers, Peter & Satchwell, Andrew, 2023. "The bill alignment test: Identifying trade-offs with residential rate design options," Utilities Policy, Elsevier, vol. 82(C).
    18. Timothé Beaufils & Pierre-Olivier Pineau, 2018. "Structures tarifaires et spirale de la mort : État des lieux des pratiques de tarification dans la distribution d’électricité résidentielle," CIRANO Working Papers 2018s-27, CIRANO.
    19. Cambini, Carlo & Soroush, Golnoush, 2019. "Designing grid tariffs in the presence of distributed generation," Utilities Policy, Elsevier, vol. 61(C).
    20. Khan, Hafiz Anwar Ullah & Ünel, Burçin & Dvorkin, Yury, 2023. "Electricity Tariff Design via Lens of Energy Justice," Omega, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:125:y:2023:i:c:s014098832300364x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.