IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v109y2017icp631-641.html
   My bibliography  Save this article

Analysis of reflectivity & predictability of electricity network tariff structures for household consumers

Author

Listed:
  • Nijhuis, M.
  • Gibescu, M.
  • Cobben, J.F.G.

Abstract

Distribution network operators charge household consumers with a network tariff, so they can recover their network investment and operational costs. With the transition; towards a sustainable energy system, the household load is changing, through the introduction of photovoltaics and electric vehicles. The tariff structures which are currently employed in the EU are either capacity and/or energy consumption based. In light of the changes in the household load the question whether these tariff structures are the most suitable merits renewed attention. In this work, the cost-reflectivity of various tariff structures has been computed based on a distribution network planning approach. Next to this, the predictability of a network tariff, i.e. how much change would a household experience in network charges in two consecutive years has also been computed to gain insight into how well users will be able to react to the tariff. The results show that a peak load based network tariffs score best on the reflectivity while having an acceptable level of predictability. The switch from an energy consumption based network tariff, which is now most often applied, towards a peak load based network tariff should therefore, be considered.

Suggested Citation

  • Nijhuis, M. & Gibescu, M. & Cobben, J.F.G., 2017. "Analysis of reflectivity & predictability of electricity network tariff structures for household consumers," Energy Policy, Elsevier, vol. 109(C), pages 631-641.
  • Handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:631-641
    DOI: 10.1016/j.enpol.2017.07.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517304809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.07.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faruqui, Ahmad & Sergici, Sanem & Lessem, Neil & Mountain, Dean, 2015. "Impact measurement of tariff changes when experimentation is not an option—A case study of Ontario, Canada," Energy Economics, Elsevier, vol. 52(PA), pages 39-48.
    2. Newsham, Guy R. & Bowker, Brent G., 2010. "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review," Energy Policy, Elsevier, vol. 38(7), pages 3289-3296, July.
    3. Cossent, Rafael & Gómez, Tomás & Frías, Pablo, 2009. "Towards a future with large penetration of distributed generation: Is the current regulation of electricity distribution ready? Regulatory recommendations under a European perspective," Energy Policy, Elsevier, vol. 37(3), pages 1145-1155, March.
    4. Bartusch, Cajsa & Wallin, Fredrik & Odlare, Monica & Vassileva, Iana & Wester, Lars, 2011. "Introducing a demand-based electricity distribution tariff in the residential sector: Demand response and customer perception," Energy Policy, Elsevier, vol. 39(9), pages 5008-5025, September.
    5. Koliou, Elta & Bartusch, Cajsa & Picciariello, Angela & Eklund, Tobias & Söder, Lennart & Hakvoort, Rudi A., 2015. "Quantifying distribution-system operators' economic incentives to promote residential demand response," Utilities Policy, Elsevier, vol. 35(C), pages 28-40.
    6. Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
    7. Sigauke, Caston & Verster, Andréhette & Chikobvu, Delson, 2013. "Extreme daily increases in peak electricity demand: Tail-quantile estimation," Energy Policy, Elsevier, vol. 53(C), pages 90-96.
    8. Berg, Sandford V. & Savvides, Andreas, 1983. "The theory of maximum kW demand charges for electricity," Energy Economics, Elsevier, vol. 5(4), pages 258-266, October.
    9. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    10. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    11. Jamasb, Tooraj & Pollitt, Michael, 2008. "Reference models and incentive regulation of electricity distribution networks: An evaluation of Sweden's Network Performance Assessment Model (NPAM)," Energy Policy, Elsevier, vol. 36(5), pages 1788-1801, May.
    12. Nijhuis, M. & Gibescu, M. & Cobben, J.F.G., 2015. "Assessment of the impacts of the renewable energy and ICT driven energy transition on distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1003-1014.
    13. Picciariello, Angela & Vergara, Claudio & Reneses, Javier & Frías, Pablo & Söder, Lennart, 2015. "Electricity distribution tariffs and distributed generation: Quantifying cross-subsidies from consumers to prosumers," Utilities Policy, Elsevier, vol. 37(C), pages 23-33.
    14. Li, Y.F. & Huang, G.H. & Li, Y.P. & Xu, Y. & Chen, W.T., 2010. "Regional-scale electric power system planning under uncertainty--A multistage interval-stochastic integer linear programming approach," Energy Policy, Elsevier, vol. 38(1), pages 475-490, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    2. Nicolás Morell Dameto & José Pablo Chaves-Ávila & Tomás Gómez San Román, 2020. "Revisiting Electricity Network Tariffs in a Context of Decarbonization, Digitalization, and Decentralization," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
    4. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    5. Küfeoğlu, Sinan & Pollitt, Michael G., 2019. "The impact of PVs and EVs on domestic electricity network charges: A case study from Great Britain," Energy Policy, Elsevier, vol. 127(C), pages 412-424.
    6. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2022. "Cost allocation in integrated community energy systems — Performance assessment," Applied Energy, Elsevier, vol. 307(C).
    7. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    8. Simeone, Christina E. & Gagnon, Pieter & Cappers, Peter & Satchwell, Andrew, 2023. "The bill alignment test: Identifying trade-offs with residential rate design options," Utilities Policy, Elsevier, vol. 82(C).
    9. Stawska, Anna & Romero, Natalia & de Weerdt, Mathijs & Verzijlbergh, Remco, 2021. "Demand response: For congestion management or for grid balancing?," Energy Policy, Elsevier, vol. 148(PA).
    10. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Lanot, Gauthier & Vesterberg, Mattias, 2021. "The price elasticity of electricity demand when marginal incentives are very large," Energy Economics, Elsevier, vol. 104(C).
    12. Tobias Rösch & Peter Treffinger, 2019. "Cluster Analysis of Distribution Grids in Baden-Württemberg," Energies, MDPI, vol. 12(20), pages 1-25, October.
    13. Beaufils, Timothé & Pineau, Pierre-Olivier, 2019. "Assessing the impact of residential load profile changes on electricity distribution utility revenues under alternative rate structures," Utilities Policy, Elsevier, vol. 61(C).
    14. Michael Maphosa, 2018. "The User Pays's Principle and the Electricity Sector: A South African Case," Journal of Economics and Behavioral Studies, AMH International, vol. 10(5), pages 51-58.
    15. Na Li & Rudi Hakvoort & Zofia Lukszo, 2021. "Cost Allocation in Integrated Community Energy Systems—Social Acceptance," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    16. Bovera, Filippo & Delfanti, Maurizio & Fumagalli, Elena & Lo Schiavo, Luca & Vailati, Riccardo, 2021. "Regulating electricity distribution networks under technological and demand uncertainty," Energy Policy, Elsevier, vol. 149(C).
    17. Timothé Beaufils & Pierre-Olivier Pineau, 2018. "Structures tarifaires et spirale de la mort : État des lieux des pratiques de tarification dans la distribution d’électricité résidentielle," CIRANO Working Papers 2018s-27, CIRANO.
    18. Bergaentzlé, Claire & Jensen, Ida Græsted & Skytte, Klaus & Olsen, Ole Jess, 2019. "Electricity grid tariffs as a tool for flexible energy systems: A Danish case study," Energy Policy, Elsevier, vol. 126(C), pages 12-21.
    19. Peter Boait & J. Richard Snape & Robin Morris & Jo Hamilton & Sarah Darby, 2019. "The Practice and Potential of Renewable Energy Localisation: Results from a UK Field Trial," Sustainability, MDPI, vol. 11(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    2. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    4. Küfeoğlu, Sinan & Pollitt, Michael G., 2019. "The impact of PVs and EVs on domestic electricity network charges: A case study from Great Britain," Energy Policy, Elsevier, vol. 127(C), pages 412-424.
    5. Passey, Robert & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2017. "Designing more cost reflective electricity network tariffs with demand charges," Energy Policy, Elsevier, vol. 109(C), pages 642-649.
    6. Gaspari, Michele & Lorenzoni, Arturo & Frías, Pablo & Reneses, Javier, 2017. "Integrated Energy Services for the industrial sector: an innovative model for sustainable electricity supply," Utilities Policy, Elsevier, vol. 45(C), pages 118-127.
    7. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    8. Christoph Schick & Nikolai Klempp & Kai Hufendiek, 2021. "Impact of Network Charge Design in an Energy System with Large Penetration of Renewables and High Prosumer Shares," Energies, MDPI, vol. 14(21), pages 1-26, October.
    9. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    10. Bjarghov, Sigurd & Farahmand, Hossein & Doorman, Gerard, 2022. "Capacity subscription grid tariff efficiency and the impact of uncertainty on the subscribed level," Energy Policy, Elsevier, vol. 165(C).
    11. Cambini, Carlo & Soroush, Golnoush, 2019. "Designing grid tariffs in the presence of distributed generation," Utilities Policy, Elsevier, vol. 61(C).
    12. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    13. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    14. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    15. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    16. Axel Gautier & Julien Jacqmin & Jean-Christophe Poudou, 2018. "The prosumers and the grid," Journal of Regulatory Economics, Springer, vol. 53(1), pages 100-126, February.
    17. Clastres, Cédric & Percebois, Jacques & Rebenaque, Olivier & Solier, Boris, 2019. "Cross subsidies across electricity network users from renewable self-consumption," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    18. L. (Lisa B.) Ryan & Sarah La Monaca & Linda Mastrandrea & Petr Spodniak, 2018. "Harnessing Electricity Retail Tariffs to Support Climate Change Policy," Working Papers 201822, School of Economics, University College Dublin.
    19. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    20. Heymann, Fabian & Miranda, Vladimiro & Soares, Filipe Joel & Duenas, Pablo & Perez Arriaga, Ignacio & Prata, Ricardo, 2019. "Orchestrating incentive designs to reduce adverse system-level effects of large-scale EV/PV adoption – The case of Portugal," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:109:y:2017:i:c:p:631-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.