IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2016-05.html
   My bibliography  Save this paper

Tail Systemic Risk And Banking Network Contagion: Evidence From the Brazilian Banking System

Author

Listed:
  • Miguel Rivera-Castro

    (ICMA Centre, Henley Business School, University of Reading)

  • Andrea Ugolini

    (Dipartimento di Statistica, Informatica, Applicazioni 'G. Parenti', Universita di Firenze)

  • Juan Arismendi Z

    (ICMA Centre, Henley Business School, University of Reading)

Abstract

In this study the tail systemic risk of the Brazilian banking system is examined, using the conditional quantile as the risk measure. Multivariate conditional dependence between Brazilian banks is modelled with a vine copula hierarchical structure. The results demonstrate that Brazilian financial systemic risk increased drastically during the global financial crisis period. Our empirical findings show that Bradesco and Itaú are the origin of the larger systemic shocks from the banking system to the financial system network. The results have implications for the capital regulation of financial institutions and for risk managers' decisions.

Suggested Citation

  • Miguel Rivera-Castro & Andrea Ugolini & Juan Arismendi Z, 2016. "Tail Systemic Risk And Banking Network Contagion: Evidence From the Brazilian Banking System," ICMA Centre Discussion Papers in Finance icma-dp2016-05, Henley Business School, University of Reading.
  • Handle: RePEc:rdg:icmadp:icma-dp2016-05
    as

    Download full text from publisher

    File URL: http://www.henley.ac.uk/files/pdf/research/papers-publications/ICM-2016-05_Rivera-Castro_et_al.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:fip:fedhpr:y:2010:i:may:p:65-71 is not listed on IDEAS
    2. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    3. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. Huang, Xin & Zhou, Hao & Zhu, Haibin, 2009. "A framework for assessing the systemic risk of major financial institutions," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2036-2049, November.
    6. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    7. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    8. Bernal, Oscar & Gnabo, Jean-Yves & Guilmin, Grégory, 2014. "Assessing the contribution of banks, insurance and other financial services to systemic risk," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 270-287.
    9. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Linda Allen & Turan G. Bali & Yi Tang, 2012. "Does Systemic Risk in the Financial Sector Predict Future Economic Downturns?," The Review of Financial Studies, Society for Financial Studies, vol. 25(10), pages 3000-3036.
    12. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    13. Avramidis, Panagiotis & Pasiouras, Fotios, 2015. "Calculating systemic risk capital: A factor model approach," Journal of Financial Stability, Elsevier, vol. 16(C), pages 138-150.
    14. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Calef, 2020. "Systemic Banking Crises: The Relationship Between Concentration and Interbank Connections," University of East Anglia School of Economics Working Paper Series 2019-06, School of Economics, University of East Anglia, Norwich, UK..

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rivera-Castro, Miguel A. & Ugolini, Andrea & Arismendi Zambrano, Juan, 2018. "Tail systemic risk and contagion: Evidence from the Brazilian and Latin America banking network," Emerging Markets Review, Elsevier, vol. 35(C), pages 164-189.
    2. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    3. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    4. Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).
    5. Reboredo, Juan C. & Ugolini, Andrea, 2015. "Systemic risk in European sovereign debt markets: A CoVaR-copula approach," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 214-244.
    6. Rahman, Md Lutfur & Troster, Victor & Uddin, Gazi Salah & Yahya, Muhammad, 2022. "Systemic risk contribution of banks and non-bank financial institutions across frequencies: The Australian experience," International Review of Financial Analysis, Elsevier, vol. 79(C).
    7. Drakos, Anastassios A. & Kouretas, Georgios P., 2015. "Bank ownership, financial segments and the measurement of systemic risk: An application of CoVaR," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 127-140.
    8. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    9. Edward M. H. Lin & Edward W. Sun & Min-Teh Yu, 2018. "Systemic risk, financial markets, and performance of financial institutions," Annals of Operations Research, Springer, vol. 262(2), pages 579-603, March.
    10. Liu, Xiaochun, 2017. "Measuring systemic risk with regime switching in tails," Economic Modelling, Elsevier, vol. 67(C), pages 55-72.
    11. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    12. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    13. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    14. Eita, Joel Hinaunye & Ngobese, Sibusiso Blessing & Muteba Mwamba, John Weirstrass, 2020. "An empirical analysis of systemic and macroeconomic risk in South Africa: an application of the quantile regression," MPRA Paper 101493, University Library of Munich, Germany.
    15. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.
    16. Martin Eling & David Antonius Pankoke, 2016. "Systemic Risk in the Insurance Sector: A Review and Directions for Future Research," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 19(2), pages 249-284, September.
    17. Morelli, David & Vioto, Davide, 2020. "Assessing the contribution of China’s financial sectors to systemic risk," Journal of Financial Stability, Elsevier, vol. 50(C).
    18. Varotto, Simone & Zhao, Lei, 2018. "Systemic risk and bank size," Journal of International Money and Finance, Elsevier, vol. 82(C), pages 45-70.
    19. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    20. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.

    More about this item

    Keywords

    Systemic Risk; Brazilian Banking System; Banking Network; Financial Contagion; Financial Crisis;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2016-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: https://edirc.repec.org/data/bsrdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.