IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201209.html
   My bibliography  Save this paper

Structural Breaks and Predictive Regressions Models of South African Equity Premium

Author

Listed:
  • Goodness C. Aye

    () (Department of Agricultural Economics, University of Agriculture, Makurdi, Nigeria)

  • Rangan Gupta

    () (Department of Economics, University of Pretoria)

  • Mampho P. Modise

    () (Department of Economics, University of Pretoria)

Abstract

In this paper, we test for the structural stability of both bivariate and multivariate predictive regression models for equity premium in South Africa over the period of 1990:01 to 2010:12, based on 23 financial and macroeconomic variables. We employ a wide range of methodologies, namely, the popular Andrews (1993) statistic and the Bai (1997) subsample procedure in conjunction with the Hansen (2000) heteroskedastic fixed-regressor bootstrap. We also used the Elliott and Muller (2003) statistic and Bai and Perron (1998, 2003a, 2004) methodologies. We find strong evidence of at least two structural breaks in 22 of 23 bivariate predictive regression models. We also obtain evidence of structural instability in the multivariate predictive regression models of equity premium. Our results also show that the predictive ability of the 23 variables can vary widely across different regimes.

Suggested Citation

  • Goodness C. Aye & Rangan Gupta & Mampho P. Modise, 2012. "Structural Breaks and Predictive Regressions Models of South African Equity Premium," Working Papers 201209, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201209
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Rossi, Barbara, 2005. "Optimal Tests For Nested Model Selection With Underlying Parameter Instability," Econometric Theory, Cambridge University Press, vol. 21(05), pages 962-990, October.
    2. Malcolm Baker & Jeffrey Wurgler, 2000. "The Equity Share in New Issues and Aggregate Stock Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2219-2257, October.
    3. John Y. Campbell & Tuomo Vuolteenaho, 2004. "Inflation Illusion and Stock Prices," American Economic Review, American Economic Association, vol. 94(2), pages 19-23, May.
    4. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    5. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2016. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(8), pages 1935-1955, August.
    6. Breen, William & Glosten, Lawrence R & Jagannathan, Ravi, 1989. " Economic Significance of Predictable Variations in Stock Index Returns," Journal of Finance, American Finance Association, vol. 44(5), pages 1177-1189, December.
    7. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    8. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    9. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    10. Martin Lettau, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    11. Lubos Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    12. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(04), pages 601-620, December.
    13. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    14. Bekaert, Geert & Hodrick, Robert J, 1992. " Characterizing Predictable Components in Excess Returns on Equity and Foreign Exchange Markets," Journal of Finance, American Finance Association, vol. 47(2), pages 467-509, June.
    15. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    16. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    17. Kellard, Neil M. & Nankervis, John C. & Papadimitriou, Fotios I., 2010. "Predicting the equity premium with dividend ratios: Reconciling the evidence," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 539-551, September.
    18. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    19. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    20. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    21. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    22. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    23. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    24. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    25. David E. Rapach & Mark E. Wohar, 2006. "Structural Breaks and Predictive Regression Models of Aggregate U.S. Stock Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 238-274.
    26. Jacob Boudoukh & Roni Michaely & Matthew Richardson & Michael R. Roberts, 2007. "On the Importance of Measuring Payout Yield: Implications for Empirical Asset Pricing," Journal of Finance, American Finance Association, vol. 62(2), pages 877-915, April.
    27. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    28. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    29. repec:skb:wpaper:cofie-02-2011 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Predictive regression model; equity premium; structural breaks; South Africa;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201209. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rangan Gupta) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/decupza.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.