IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/94473.html
   My bibliography  Save this paper

Superkurtosis

Author

Listed:
  • Degiannakis, Stavros
  • Filis, George
  • Siourounis, Grigorios
  • Trapani, Lorenzo

Abstract

Very little is known on how traditional risk metrics behave in ultra high frequency trading (UHFT). We fi�ll this void �firstly by examining the existence of the intraday returns moments, and secondly by assessing the impact of their (non)existence in a risk management framework. We show that in the case of UHFT, the returns' third and fourth moments do not exist, which entails that traditional risk metrics are unable to judge capital adequacy adequately. Hence, the use of risk management techniques, such as VaR, by market participants who engage with UHFT impose serious threats to the stability of fi�nancial markets, given that capital ratios may be severely underestimated.

Suggested Citation

  • Degiannakis, Stavros & Filis, George & Siourounis, Grigorios & Trapani, Lorenzo, 2019. "Superkurtosis," MPRA Paper 94473, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:94473
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/94473/1/MPRA_paper_94473.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    • Degiannakis, Stavros & Filis, George & Siourounis, Grigorios & Trapani, Lorenzo, 2019. "Superkurtosis," MPRA Paper 96563, University Library of Munich, Germany.

    References listed on IDEAS

    as
    1. Trapani, Lorenzo, 2016. "Testing for (in)finite moments," Journal of Econometrics, Elsevier, vol. 191(1), pages 57-68.
    2. Igor Fedotenkov, 2013. "A bootstrap method to test for the existence of finite moments," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 315-322, June.
    3. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    4. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    5. Andrei A. Kirilenko & Andrew W. Lo, 2013. "Moore's Law versus Murphy's Law: Algorithmic Trading and Its Discontents," Journal of Economic Perspectives, American Economic Association, vol. 27(2), pages 51-72, Spring.
    6. Beddington, John & Furse, Clara & Bond, Philip & Cliff, Dave & Goodhart, Charles & Houstoun, Kevin & Linton, Oliver & Zigrand, Jean-Pierre, 2012. "Foresight: the future of computer trading in financial markets: final project report," LSE Research Online Documents on Economics 62157, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    2. Angerer, Martin & Neugebauer, Tibor & Shachat, Jason, 2019. "Arbitrage bots in experimental asset markets," MPRA Paper 96224, University Library of Munich, Germany.
    3. Dewitte, Ruben, 2020. "From Heavy-Tailed Micro to Macro: on the characterization of firm-level heterogeneity and its aggregation properties," MPRA Paper 103170, University Library of Munich, Germany.
    4. Gianluca Piero Maria Virgilio, 2019. "High-frequency trading: a literature review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 183-208, June.
    5. Bellia, Mario & Christensen, Kim & Kolokolov, Aleksey & Pelizzon, Loriana & Renò, Roberto, 2020. "High-frequency trading during flash crashes: Walk of fame or hall of shame?," SAFE Working Paper Series 270, Leibniz Institute for Financial Research SAFE.
    6. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    7. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    8. Jin, Miao & Liu, Yu-Jane & Meng, Juanjuan, 2019. "Fat-finger event and risk-taking behavior," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 126-143.
    9. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    10. Gunther Capelle-Blancard, 2018. "What is the Point of (the Hundreds of Thousands of Billions of) Stock Transactions?," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 60(1), pages 15-33, March.
    11. Corsetti, Giancarlo & Lafarguette, Romain & Mehl, Arnaud, 2019. "Fast trading and the virtue of entropy: evidence from the foreign exchange market," Working Paper Series 2300, European Central Bank.
    12. Flood, M. D. & Jagadish, H. V. & Raschid, L., 2016. "Big data challenges and opportunities in financial stability monitoring," Financial Stability Review, Banque de France, issue 20, pages 129-142, April.
    13. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    14. Virgilio, Gianluca, 2017. "Is high-frequency trading tiering the financial markets?," Research in International Business and Finance, Elsevier, vol. 41(C), pages 158-171.
    15. Daniel Fricke & Austin Gerig, 2018. "Too fast or too slow? Determining the optimal speed of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 519-532, April.
    16. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    17. Hwang, Eunju, 2021. "Weighted least squares estimation in a binary random coefficient panel model with infinite variance," Statistics & Probability Letters, Elsevier, vol. 168(C).
    18. Farjam, Mike & Kirchkamp, Oliver, 2018. "Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading," Journal of Economic Behavior & Organization, Elsevier, vol. 146(C), pages 248-269.
    19. Hautsch, Nikolaus & Noé, Michael & Zhang, S. Sarah, 2017. "The ambivalent role of high-frequency trading in turbulent market periods," CFS Working Paper Series 580, Center for Financial Studies (CFS).
    20. Gonçalves, Jorge & Kräussl, Roman & Levin, Vladimir, 2019. "Do "speed bumps" prevent accidents in financial markets?," CFS Working Paper Series 636, Center for Financial Studies (CFS).

    More about this item

    Keywords

    Ultra high frequency trading; risk management; fi�nite moments; superkurtosis.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • F30 - International Economics - - International Finance - - - General
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:94473. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.