IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/93634.html
   My bibliography  Save this paper

IFRS9 Expected Credit Loss Estimation: Advanced Models for Estimating Portfolio Loss and Weighting Scenario Losses

Author

Listed:
  • Yang, Bill Huajian
  • Wu, Biao
  • Cui, Kaijie
  • Du, Zunwei
  • Fei, Glenn

Abstract

Estimation of portfolio expected credit loss is required for IFRS9 regulatory purposes. It starts with the estimation of scenario loss at loan level, and then aggregated and summed up by scenario probability weights to obtain portfolio expected loss. This estimated loss can vary significantly, depending on the levels of loss severity generated by the IFSR9 models, and the probability weights chosen. There is a need for a quantitative approach for determining the weights for scenario losses. In this paper, we propose a model to estimate the expected portfolio losses brought by recession risk, and a quantitative approach for determining the scenario weights. The model and approach are validated by an empirical example, where we stress portfolio expected loss by recession risk, and calculate the scenario weights accordingly.

Suggested Citation

  • Yang, Bill Huajian & Wu, Biao & Cui, Kaijie & Du, Zunwei & Fei, Glenn, 2019. "IFRS9 Expected Credit Loss Estimation: Advanced Models for Estimating Portfolio Loss and Weighting Scenario Losses," MPRA Paper 93634, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:93634
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/93634/1/MPRA_paper_93634.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    3. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    4. Yang, Bill Huajian, 2013. "Estimating Long-Run PD, Asset Correlation, and Portfolio Level PD by Vasicek Models," MPRA Paper 57244, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Scenario weight; stressed expected credit loss; loss severity; recession probability; Vasicek distribution; probit mixed model;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G1 - Financial Economics - - General Financial Markets
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:93634. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.