IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/9056.html
   My bibliography  Save this paper

The strengths and weaknesses of L2 approximable regressors

Author

Listed:
  • Mynbaev, Kairat

Abstract

The most part of the paper is about modeling (or approximating) nonstochastic regressors. Examples of regressors which are (not) L2-approximable are given. Applications to central limit theory and OLS estimator asymptotics are provided.

Suggested Citation

  • Mynbaev, Kairat, 2001. "The strengths and weaknesses of L2 approximable regressors," MPRA Paper 9056, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:9056
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/9056/1/MPRA_paper_9056.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Eugene Canjels & Mark W. Watson, 1997. "Estimating Deterministic Trends In The Presence Of Serially Correlated Errors," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 184-200, May.
    2. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 395-432.
    3. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mynbaev, Kairat, 2003. "Asymptotic properties of OLS estimates in autoregressions with bounded or slowly growing deterministic trends," MPRA Paper 18448, University Library of Munich, Germany, revised 2005.
    2. Mynbaev, Kairat, 2006. "Asymptotic Distribution of the OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model," MPRA Paper 4411, University Library of Munich, Germany.

    More about this item

    Keywords

    L2-approximable regressors; linear regression; OLS estimator; central limit theorem; asymptotic theory;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:9056. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.