IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/4411.html
   My bibliography  Save this paper

Asymptotic Distribution of the OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model

Author

Listed:
  • Mynbaev, Kairat

Abstract

We find the asymptotics of the OLS estimator of the parameters $\beta$ and $\rho$ in the spatial autoregressive model with exogenous regressors $Y_n = X_n\beta+\rho W_nY_n+V_n$. Only low-level conditions are imposed. Exogenous regressors may be bounded or growing, like polynomial trends. The assumption on the spatial matrix $W_n$ is appropriate for the situation when each economic agent is influenced by many others. The asymptotics contains both linear and quadratic forms in standard normal variables. The conditions and the format of the result are chosen in a way compatible with known results for the model without lags by Anderson (1971) and for the spatial model without exogenous regressors due to Mynbaev and Ullah (2006).

Suggested Citation

  • Mynbaev, Kairat, 2006. "Asymptotic Distribution of the OLS Estimator for a Mixed Regressive, Spatial Autoregressive Model," MPRA Paper 4411, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:4411
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/4411/1/MPRA_paper_4411.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Mynbaev, Kairat & Ullah, Aman, 2006. "A Remark on the Asymptotic Distribution of the OLS Estimator for a Purely Autoregressive Spatial Model," MPRA Paper 3318, University Library of Munich, Germany.
    4. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    5. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(02), pages 252-277, April.
    6. Paelinck, J., 1978. "Spatial econometrics," Economics Letters, Elsevier, vol. 1(1), pages 59-63.
    7. Mynbaev, Kairat, 2003. "Asymptotic properties of OLS estimates in autoregressions with bounded or slowly growing deterministic trends," MPRA Paper 18448, University Library of Munich, Germany, revised 2005.
    8. Mynbaev, Kairat, 2001. "The strengths and weaknesses of L2 approximable regressors," MPRA Paper 9056, University Library of Munich, Germany.
    9. Mynbaev, Kairat, 2000. "$L_p$-Approximable sequences of vectors and limit distribution of quadratic forms of random variables," MPRA Paper 18447, University Library of Munich, Germany, revised 2001.
    10. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    mixed regressive spatial autoregressive model; OLS estimator; asymptotic distribution;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:4411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.