IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/90486.html
   My bibliography  Save this paper

Credit Risk and Fiscal Inflation

Author

Listed:
  • Li, Bing
  • Pei, Pei
  • Tan, Fei

Abstract

Is inflation ‘always and everywhere a monetary phenomenon’ or is it fundamentally a fiscal phenomenon? This article augments a standard monetary model to incorporate fiscal details and credit market frictions. These ingredients allow for both interpretations of the inflation process in a financially constrained environment. We find that adding financial frictions to the model generates important identifying restrictions on the observed pattern between inflation and measures of financial and fiscal stress, to the extent that it can overturn existing findings about which monetary-fiscal policy regime produced the pre-crisis U.S. data.

Suggested Citation

  • Li, Bing & Pei, Pei & Tan, Fei, 2018. "Credit Risk and Fiscal Inflation," MPRA Paper 90486, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:90486
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/90486/1/MPRA_paper_90486.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
    2. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DUFAYS, Arnaud, 2012. "Infinite-state Markov-switching for dynamic volatility and correlation models," LIDAM Discussion Papers CORE 2012043, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    3. Fiorentini, G. & Planas, C. & Rossi, A., 2012. "The marginal likelihood of dynamic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2650-2662.
    4. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    5. Wichitaksorn, Nuttanan & Tsurumi, Hiroki, 2013. "Comparison of MCMC algorithms for the estimation of Tobit model with non-normal error: The case of asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 226-235.
    6. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    7. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    8. Kakamu, Kazuhiko & Yunoue, Hideo & Kuramoto, Takashi, 2014. "Spatial patterns of flypaper effects for local expenditure by policy objective in Japan: A Bayesian approach," Economic Modelling, Elsevier, vol. 37(C), pages 500-506.
    9. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    10. Gary Bolton & Duncan Fong & Paul Mosquin, 2003. "Bayes Factors with an Application to Experimental Economics," Experimental Economics, Springer;Economic Science Association, vol. 6(3), pages 311-325, November.
    11. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    14. Mariano Kulish & James Morley & Tim Robinson, 2014. "Estimating the expected duration of the zero lower bound in DSGE models with forward guidance," Discussion Papers 2014-32, School of Economics, The University of New South Wales.
    15. Moeltner, Klaus, 2019. "Bayesian nonlinear meta regression for benefit transfer," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 44-62.
    16. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    17. Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.
    18. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    19. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    20. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Keywords

    monetary and fiscal policy; financial frictions; marginal likelihood;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy
    • E63 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Comparative or Joint Analysis of Fiscal and Monetary Policy; Stabilization; Treasury Policy
    • H63 - Public Economics - - National Budget, Deficit, and Debt - - - Debt; Debt Management; Sovereign Debt

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:90486. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.