IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/65865.html
   My bibliography  Save this paper

Real Time Monitoring of Carbon Monoxide Using Value-at-Risk Measure and Control Charting

Author

Listed:
  • Bersimis, Sotirios
  • Degiannakis, Stavros
  • Georgakellos, Dimitrios

Abstract

One of the most important environmental health issues is air pollution, causing the deterioration of the population’s quality of life, principally in cities where the urbanization level seems limitless. Among ambient pollutants, carbon monoxide (CO) is well known for its biological toxicity. Many studies report associations between exposure to CO and excess mortality. In this context, the present work provides an advanced modelling scheme for real time monitoring of pollution data and especially of carbon monoxide pollution in city level. The real time monitoring is based on an appropriately adjusted multivariate time series model that is used in finance and gives accurate one-step-ahead forecasts. On the output of the time series, we apply an empirical monitoring scheme that is used for the early detection of abnormal increases of CO levels. The proposed methodology is applied in the city of Athens and as the analysis revealed has a valuable performance.

Suggested Citation

  • Bersimis, Sotirios & Degiannakis, Stavros & Georgakellos, Dimitrios, 2015. "Real Time Monitoring of Carbon Monoxide Using Value-at-Risk Measure and Control Charting," MPRA Paper 65865, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:65865
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/65865/1/MPRA_paper_65865.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/96279/1/MPRA_paper_65865.pdf
    File Function: revised version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    4. Sujit K. Sahu & Kanti V. Mardia, 2005. "A Bayesian kriged Kalman model for short‐term forecasting of air pollution levels," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 223-244, January.
    5. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, June.
    6. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    7. Prybutok, Victor R. & Yi, Junsub & Mitchell, David, 2000. "Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations," European Journal of Operational Research, Elsevier, vol. 122(1), pages 31-40, April.
    8. Corbett, Charles J. & Pan, Jeh-Nan, 2002. "Evaluating environmental performance using statistical process control techniques," European Journal of Operational Research, Elsevier, vol. 139(1), pages 68-83, May.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    11. Stavros Degiannakis & David Duffy & George Filis, 2014. "Business Cycle Synchronization in EU: A Time-Varying Approach," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(4), pages 348-370, September.
    12. Badr, O. & Probert, S. D., 1994. "Sources of atmospheric carbon monoxide," Applied Energy, Elsevier, vol. 49(2), pages 145-195.
    13. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    14. Adrian W. Bowman & Marco Giannitrapani & E. Marian Scott, 2009. "Spatiotemporal smoothing and sulphur dioxide trends over Europe," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 737-752, December.
    15. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    16. Bersimis, Sotiris & Psarakis, Stelios & Panaretos, John, 2006. "Multivariate Statistical Process Control Charts: An Overview," MPRA Paper 6399, University Library of Munich, Germany.
    17. Engle, Robert F. & Granger, C. W. J. & Kraft, Dennis, 1984. "Combining competing forecasts of inflation using a bivariate arch model," Journal of Economic Dynamics and Control, Elsevier, vol. 8(2), pages 151-165, November.
    18. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.),THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Air Quality Surveillance; Atmospheric Pollution; Autoregressive Conditional Heteroskedasticity modelling; Control Charts; Diag-aVECH; Multivariate Statistical Process Monitoring; Multivariate Time Series; Value-at-Risk.;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:65865. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.