IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/5075.html
   My bibliography  Save this paper

Optimal Portfolio Liquidation for CARA Investors

Author

Listed:
  • Schied, Alexander
  • Schöneborn, Torsten

Abstract

We consider the finite-time optimal portfolio liquidation problem for a von Neumann-Morgenstern investor with constant absolute risk aversion (CARA). As underlying market impact model, we use the continuous-time liquidity model of Almgren and Chriss (2000). We show that the expected utility of sales revenues, taken over a large class of adapted strategies, is maximized by a deterministic strategy, which is explicitly given in terms of an analytic formula. The proof relies on the observation that the corresponding value function solves a degenerate Hamilton-Jacobi-Bellman equation with singular initial condition.

Suggested Citation

  • Schied, Alexander & Schöneborn, Torsten, 2007. "Optimal Portfolio Liquidation for CARA Investors," MPRA Paper 5075, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:5075
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/5075/1/MPRA_paper_5075.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    2. Markus K. Brunnermeier & Lasse Heje Pedersen, 2005. "Predatory Trading," Journal of Finance, American Finance Association, vol. 60(4), pages 1825-1863, August.
    3. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    4. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    5. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    6. Marc Potters & Jean-Philippe Bouchaud, 2002. "More statistical properties of order books and price impact," Science & Finance (CFM) working paper archive 0210710, Science & Finance, Capital Fund Management.
    7. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    8. P. Weber & B. Rosenow, 2005. "Order book approach to price impact," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 357-364.
    9. Potters, Marc & Bouchaud, Jean-Philippe, 2003. "More statistical properties of order books and price impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 133-140.
    10. Bruce Ian Carlin & Miguel Sousa Lobo & S. Viswanathan, 2007. "Episodic Liquidity Crises: Cooperative and Predatory Trading," Journal of Finance, American Finance Association, vol. 62(5), pages 2235-2274, October.
    11. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2003. "Fluctuations and response in financial markets: the subtle nature of `random' price changes," Papers cond-mat/0307332, arXiv.org, revised Aug 2003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    2. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    3. Leonid Dolinskyi & Yan Dolinsky, 2024. "Optimal liquidation with high risk aversion and small linear price impact," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 183-198, June.
    4. Peter Bank & Yan Dolinsky & Mikl'os R'asonyi, 2021. "What if we knew what the future brings? Optimal investment for a frontrunner with price impact," Papers 2108.04291, arXiv.org, revised May 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    2. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    3. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    4. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    6. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    7. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2010. "The Price Impact of Order Book Events," Papers 1011.6402, arXiv.org, revised Apr 2011.
    8. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    10. Alexander Schied & Tao Zhang, 2013. "A market impact game under transient price impact," Papers 1305.4013, arXiv.org, revised May 2017.
    11. Enzo Busseti & Fabrizio Lillo, 2012. "Calibration of optimal execution of financial transactions in the presence of transient market impact," Papers 1206.0682, arXiv.org.
    12. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    13. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    14. Peter Kratz & Torsten Schoneborn, 2012. "Portfolio liquidation in dark pools in continuous time," Papers 1201.6130, arXiv.org, revised Aug 2012.
    15. Nico Achtsis & Dirk Nuyens, 2013. "A Monte Carlo method for optimal portfolio executions," Papers 1312.5919, arXiv.org.
    16. Vayanos, Dimitri & Wang, Jiang, 2012. "Market liquidity - theory and empirical evidence," LSE Research Online Documents on Economics 119044, London School of Economics and Political Science, LSE Library.
    17. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    18. Schoeneborn, Torsten & Schied, Alexander, 2007. "Liquidation in the Face of Adversity: Stealth Vs. Sunshine Trading, Predatory Trading Vs. Liquidity Provision," MPRA Paper 5548, University Library of Munich, Germany.
    19. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.

    More about this item

    Keywords

    Liquidity; illiquid markets; optimal liquidation strategies; dynamic trading strategies; algorithmic trading; utility maximization;
    All these keywords.

    JEL classification:

    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:5075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.