IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

General Intensity Shapes in Optimal Liquidation

  • Olivier Gu\'eant
  • Charles-Albert Lehalle

The classical literature on optimal liquidation, rooted in Almgren-Chriss models, tackles the optimal liquidation problem using a trade-off between market impact and price risk. Therefore, it only answers the general question of the optimal liquidation rhythm. The very question of the actual way to proceed with liquidation is then rarely dealt with. Our model, that incorporates both price risk and non-execution risk, is an attempt to tackle this question using limit orders. The very general framework we propose to model liquidation generalizes the existing literature on optimal posting of limit orders. We consider a risk-adverse agent whereas the model of Bayraktar and Ludkovski only tackles the case of a risk-neutral one. We consider very general functional forms for the execution process intensity, whereas Gu\'eant et al. is restricted to exponential intensity. Eventually, we link the execution cost function of Almgren-Chriss models to the intensity function in our model, providing then a way to see Almgren-Chriss models as a limit of ours.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1204.0148
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1204.0148.

as
in new window

Length:
Date of creation: Mar 2012
Date of revision: Jun 2013
Handle: RePEc:arx:papers:1204.0148
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag\`es, 2009. "Optimal split of orders across liquidity pools: a stochastic algorithm approach," Papers 0910.1166, arXiv.org, revised May 2010.
  2. Guéant, Olivier & Lehalle, Charles-Albert & Tapia, Joaquin Fernandez, 2011. "Optimal Portfolio Liquidation with Limit Orders," Economics Papers from University Paris Dauphine 123456789/7391, Paris Dauphine University.
  3. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
  4. Fabien Guilbaud & Mohamed Mnif & Huy\^en Pham, 2010. "Numerical methods for an optimal order execution problem," Papers 1006.0768, arXiv.org.
  5. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
  6. Schied, Alexander & Schöneborn, Torsten, 2007. "Optimal Portfolio Liquidation for CARA Investors," MPRA Paper 5075, University Library of Munich, Germany.
  7. He, Hua & Mamaysky, Harry, 2005. "Dynamic trading policies with price impact," Journal of Economic Dynamics and Control, Elsevier, vol. 29(5), pages 891-930, May.
  8. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
  9. Erhan Bayraktar & Michael Ludkovski, 2011. "Liquidation in Limit Order Books with Controlled Intensity," Papers 1105.0247, arXiv.org, revised Jan 2012.
  10. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
  11. Anna Obizhaeva & Jiang Wang, 2005. "Optimal Trading Strategy and Supply/Demand Dynamics," NBER Working Papers 11444, National Bureau of Economic Research, Inc.
  12. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
  13. Alexander Schied & Torsten Schoneborn & Michael Tehranchi, 2010. "Optimal Basket Liquidation for CARA Investors is Deterministic," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(6), pages 471-489.
  14. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag\`es, 2011. "Optimal posting price of limit orders: learning by trading," Papers 1112.2397, arXiv.org, revised Sep 2012.
  15. Aur\'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
  16. Gur Huberman & Werner Stanzl, 2000. "Optimal Liquidity Trading," Yale School of Management Working Papers ysm165, Yale School of Management, revised 01 Aug 2001.
  17. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1204.0148. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.