IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01393114.html
   My bibliography  Save this paper

Optimal Portfolio Liquidation with Limit Orders

Author

Listed:
  • Olivier Guéant

    () (LJLL - Laboratoire Jacques-Louis Lions - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique)

  • Charles-Albert Lehalle

    () (Department of Mathematics [Imperial College London] - Imperial College London)

  • Joaquin Fernandez Tapia

    (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper addresses the optimal scheduling of the liquidation of a portfolio using a new angle. Instead of focusing only on the scheduling aspect like Almgren and Chriss, or only on the liquidity-consuming orders like Obizhaeva and Wang, we link the optimal trade-schedule to the price of the limit orders that have to be sent to the limit order book to optimally liquidate a portfolio. Most practitioners address these two issues separately: they compute an optimal trading curve and they then send orders to the markets to try to follow it. The results obtained here solve simultaneously the two problems. As in a previous paper that solved the "intra-day market making problem", the interactions of limit orders with the market are modeled via a Poisson process pegged to a diffusive "fair price" and a Hamilton-Jacobi-Bellman equation is used to solve the problem involving both non-execution risk and price risk. Backtests are carried out to exemplify the use of our results, both on long periods of time (for the entire liquidation process) and on slices of 5 minutes (to follow a given trading curve).

Suggested Citation

  • Olivier Guéant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2012. "Optimal Portfolio Liquidation with Limit Orders," Post-Print hal-01393114, HAL.
  • Handle: RePEc:hal:journl:hal-01393114
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-01393114
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    2. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    3. Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag`es, 2009. "Optimal split of orders across liquidity pools: a stochastic algorithm approach," Papers 0910.1166, arXiv.org, revised May 2010.
    4. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    5. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    6. Thierry Foucault & Albert J. Menkveld, 2008. "Competition for Order Flow and Smart Order Routing Systems," Journal of Finance, American Finance Association, vol. 63(1), pages 119-158, February.
    7. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    8. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    9. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    10. Gur Huberman & Werner Stanzl, 2005. "Optimal Liquidity Trading," Review of Finance, Springer, vol. 9(2), pages 165-200, June.
    11. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01393114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.