IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1112.2397.html
   My bibliography  Save this paper

Optimal posting price of limit orders: learning by trading

Author

Listed:
  • Sophie Laruelle

    (LPMA)

  • Charles-Albert Lehalle

    (LPMA)

  • Gilles Pag`es

    (LPMA)

Abstract

Considering that a trader or a trading algorithm interacting with markets during continuous auctions can be modeled by an iterating procedure adjusting the price at which he posts orders at a given rhythm, this paper proposes a procedure minimizing his costs. We prove the a.s. convergence of the algorithm under assumptions on the cost function and give some practical criteria on model parameters to ensure that the conditions to use the algorithm are fulfilled (using notably the co-monotony principle). We illustrate our results with numerical experiments on both simulated data and using a financial market dataset.

Suggested Citation

  • Sophie Laruelle & Charles-Albert Lehalle & Gilles Pag`es, 2011. "Optimal posting price of limit orders: learning by trading," Papers 1112.2397, arXiv.org, revised Sep 2012.
  • Handle: RePEc:arx:papers:1112.2397
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1112.2397
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Michael Ludkovski, 2014. "Liquidation In Limit Order Books With Controlled Intensity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 627-650, October.
    2. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    3. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2005. "Limit Order Book as a Market for Liquidity," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1171-1217.
    4. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    5. Olivier Gu'eant & Charles-Albert Lehalle & Joaquin Fernandez Tapia, 2011. "Dealing with the Inventory Risk. A solution to the market making problem," Papers 1105.3115, arXiv.org, revised Aug 2012.
    6. repec:dau:papers:123456789/7390 is not listed on IDEAS
    7. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1112.2397. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.