IDEAS home Printed from
   My bibliography  Save this paper

Numerical methods for an optimal order execution problem


  • Fabien Guilbaud
  • Mohamed Mnif
  • Huy^en Pham


This paper deals with numerical solutions to an impulse control problem arising from optimal portfolio liquidation with bid-ask spread and market price impact penalizing speedy execution trades. The corresponding dynamic programming (DP) equation is a quasi-variational inequality (QVI) with solvency constraint satisfied by the value function in the sense of constrained viscosity solutions. By taking advantage of the lag variable tracking the time interval between trades, we can provide an explicit backward numerical scheme for the time discretization of the DPQVI. The convergence of this discrete-time scheme is shown by viscosity solutions arguments. An optimal quantization method is used for computing the (conditional) expectations arising in this scheme. Numerical results are presented by examining the behaviour of optimal liquidation strategies, and comparative performance analysis with respect to some benchmark execution strategies. We also illustrate our optimal liquidation algorithm on real data, and observe various interesting patterns of order execution strategies. Finally, we provide some numerical tests of sensitivity with respect to the bid/ask spread and market impact parameters.

Suggested Citation

  • Fabien Guilbaud & Mohamed Mnif & Huy^en Pham, 2010. "Numerical methods for an optimal order execution problem," Papers 1006.0768,
  • Handle: RePEc:arx:papers:1006.0768

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    2. Vathana Ly Vath & Mohamed Mnif & Huyên Pham, 2007. "A model of optimal portfolio selection under liquidity risk and price impact," Finance and Stochastics, Springer, vol. 11(1), pages 51-90, January.
    3. He, Hua & Mamaysky, Harry, 2005. "Dynamic trading policies with price impact," Journal of Economic Dynamics and Control, Elsevier, vol. 29(5), pages 891-930, May.
    4. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    5. Potters, Marc & Bouchaud, Jean-Philippe, 2003. "More statistical properties of order books and price impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 133-140.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1006.0768. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.