IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/50547.html
   My bibliography  Save this paper

Szpilrajn-type extensions of fuzzy quasiorderings

Author

Listed:
  • Alcantud, José Carlos R.
  • Díaz, Susana

Abstract

The problem of embedding incomplete into complete relations has been an important topic of research in the context of crisp relations. After Szpilrajn’s result, several variations have been published. Alcantud studied in 2009 the case where the extension is asked to satisfy some order conditions between elements. He first studied and solved a particular formulation where conditions are imposed in terms of strict preference only, which helps to precisely identify which quasiorderings can be extended when we allow for additional conditions in terms of indifference too. In this contribution we generalize both results to the fuzzy case.

Suggested Citation

  • Alcantud, José Carlos R. & Díaz, Susana, 2013. "Szpilrajn-type extensions of fuzzy quasiorderings," MPRA Paper 50547, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:50547
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/50547/1/MPRA_paper_50547.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bossert, Walter & Sprumont, Yves & Suzumura, Kotaro, 2002. "Upper semicontinuous extensions of binary relations," Journal of Mathematical Economics, Elsevier, vol. 37(3), pages 231-246, May.
    2. Yi, Gyoseob, 1993. "Continuous extension of preferences," Journal of Mathematical Economics, Elsevier, vol. 22(6), pages 547-555.
    3. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
    4. José Alcantud, 2009. "Conditional ordering extensions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(3), pages 495-503, June.
    5. Jaffray, Jean-Yves, 1975. "Semicontinuous extension of a partial order," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 395-406, December.
    6. Donaldson, David & Weymark, John A., 1998. "A Quasiordering Is the Intersection of Orderings," Journal of Economic Theory, Elsevier, vol. 78(2), pages 382-387, February.
    7. Suzumura, Kataro, 1976. "Remarks on the Theory of Collective Choice," Economica, London School of Economics and Political Science, vol. 43(172), pages 381-390, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Quasiordering; order; extension of a quasiordering.;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • D01 - Microeconomics - - General - - - Microeconomic Behavior: Underlying Principles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:50547. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.