IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v43y2002i2p115-134.html
   My bibliography  Save this article

On the continuous analogue of the Szpilrajn Theorem I

Author

Listed:
  • Herden, Gerhard
  • Pallack, Andreas

Abstract

No abstract is available for this item.

Suggested Citation

  • Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
  • Handle: RePEc:eee:matsoc:v:43:y:2002:i:2:p:115-134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(01)00077-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herden, G., 1989. "On the existence of utility functions," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 297-313, June.
    2. Banerjee, Asis & Pattanaik, Prasanta K., 1996. "A note on a property of maximal sets and choice in the absence of universal comparability," Economics Letters, Elsevier, vol. 51(2), pages 191-195, May.
    3. Herden, G., 1989. "On the existence of utility functions ii," Mathematical Social Sciences, Elsevier, vol. 18(2), pages 107-117, October.
    4. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
    5. Jaffray, Jean-Yves, 1975. "Semicontinuous extension of a partial order," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 395-406, December.
    6. Donaldson, David & Weymark, John A., 1998. "A Quasiordering Is the Intersection of Orderings," Journal of Economic Theory, Elsevier, vol. 78(2), pages 382-387, February.
    7. Mehta, Ghanshyam, 1988. "Some general theorems on the existence of order-preserving functions," Mathematical Social Sciences, Elsevier, vol. 15(2), pages 135-143, April.
    8. Sholomov, Lev A., 2000. "Explicit form of neutral social decision rules for basic rationality conditions," Mathematical Social Sciences, Elsevier, vol. 39(1), pages 81-107, January.
    9. Oloriz, Esteban & Candeal, Juan Carlos & Indurain, Esteban, 1998. "Representability of Interval Orders," Journal of Economic Theory, Elsevier, vol. 78(1), pages 219-227, January.
    10. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
    11. Diaye, Marc-Arthur, 1999. "Variable intervals model," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 21-33, July.
    12. Herden, G., 1995. "On some equivalent approaches to Mathematical Utility Theory," Mathematical Social Sciences, Elsevier, vol. 29(1), pages 19-31, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    2. repec:san:wpecon:1305 is not listed on IDEAS
    3. Andrikopoulos, Athanasios, 2009. "Szpilrajn-type theorems in economics," MPRA Paper 14345, University Library of Munich, Germany.
    4. Herden, Gerhard & Levin, Vladimir L., 2012. "Utility representation theorems for Debreu separable preorders," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 148-154.
    5. Alcantud, José Carlos R. & Díaz, Susana, 2013. "Szpilrajn-type extensions of fuzzy quasiorderings," MPRA Paper 50547, University Library of Munich, Germany.
    6. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    7. T. Demuynck, 2006. "Existence of closed and complete extensions applied to convex, homothetic an monotonic orderings," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/407, Ghent University, Faculty of Economics and Business Administration.
    8. Alcantud, José Carlos R. & Bosi, Gianni & Zuanon, Magalì, 2013. "Representations of preorders by strong multi-objective functions," MPRA Paper 52329, University Library of Munich, Germany.
    9. Bosi, Gianni & Campion, Maria J. & Candeal, Juan C. & Indurain, Esteban & Zuanon, Magali E., 2007. "Isotonies on ordered cones through the concept of a decreasing scale," Mathematical Social Sciences, Elsevier, vol. 54(2), pages 115-127, September.
    10. Magyarkuti, Gyula, 2008. "Szeparábilitási koncepciók és a reprezentációs tétel Nachbin-féle megközelítése
      [Urishon-Nachbin approach to utility representation theorem]
      ," MPRA Paper 20171, University Library of Munich, Germany.
    11. Athanasios Andrikopoulos, 2017. "Generalizations of Szpilrajn's Theorem in economic and game theories," Papers 1708.04711, arXiv.org.
    12. T. Demuynck, 2009. "Common ordering extensions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/593, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:43:y:2002:i:2:p:115-134. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.