IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v42y2019i1d10.1007_s10203-018-0213-4.html
   My bibliography  Save this article

On the extension of binary relations in economic and game theories

Author

Listed:
  • Athanasios Andrikopoulos

    () (University of Patras)

Abstract

Szpilrajn’s extension theorem on binary relations and its strengthening by Dushnik and Miller are fundamental in economic and game theories. Szpilrajn’s result entails that each partial order extends to a linear order. Dushnik and Miller use Szpilrajn’s theorem to show that each partial order has a realizer. Since then, many authors utilize Szpilrajn’s theorem and the well-ordering principle to prove more general theorems on extending binary relations. The original extension theorems of Szpilrajn, Dushnik-Miller and Moulin-Weymark are called: Szpilrajn extension theorem, Dushnik-Miller extension theorem and Moulin-Weymark’s Pareto extension theorem respectively. The generalizations of these theorems are called: Szpilrajn-type extension theorem, Dushnik-Miller-type extension theorem and Moulin-Weymark’s Pareto-type extension theorem respectively. The presented results generalize well-known extension theorems in the literature.

Suggested Citation

  • Athanasios Andrikopoulos, 2019. "On the extension of binary relations in economic and game theories," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 277-285, June.
  • Handle: RePEc:spr:decfin:v:42:y:2019:i:1:d:10.1007_s10203-018-0213-4
    DOI: 10.1007/s10203-018-0213-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-018-0213-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen A. Clark, 1988. "An extension theorem for rational choice functions," Review of Economic Studies, Oxford University Press, vol. 55(3), pages 485-492.
    2. Bossert, Walter & Sprumont, Yves & Suzumura, Kotaro, 2002. "Upper semicontinuous extensions of binary relations," Journal of Mathematical Economics, Elsevier, vol. 37(3), pages 231-246, May.
    3. Jaffray, Jean-Yves, 1975. "Semicontinuous extension of a partial order," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 395-406, December.
    4. Demuynck, Thomas, 2009. "A general extension result with applications to convexity, homotheticity and monotonicity," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 96-109, January.
    5. Weymark, John A., 2000. "A generalization of Moulin's Pareto extension theorem," Mathematical Social Sciences, Elsevier, vol. 39(2), pages 235-240, March.
    6. Paolo Scapparone, 1999. "Existence of a convex extension of a preference relation," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 22(1), pages 5-11, March.
    7. Podinovski, Vladislav V., 2013. "Non-dominance and potential optimality for partial preference relations," European Journal of Operational Research, Elsevier, vol. 229(2), pages 482-486.
    8. Demuynck, Thomas & Lauwers, Luc, 2009. "Nash rationalization of collective choice over lotteries," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 1-15, January.
    9. Athanasios Andrikopoulos, 2012. "On the construction of non-empty choice sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(2), pages 305-323, February.
    10. Sophie Bade, 2005. "Nash equilibrium in games with incomplete preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 309-332, August.
    11. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
    12. Suzumura, Kataro, 1976. "Remarks on the Theory of Collective Choice," Economica, London School of Economics and Political Science, vol. 43(172), pages 381-390, November.
    13. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Extension theorems; Consistent binary relations; Intersection of binary relations; Realizer;

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • D00 - Microeconomics - - General - - - General
    • D60 - Microeconomics - - Welfare Economics - - - General
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:42:y:2019:i:1:d:10.1007_s10203-018-0213-4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.