IDEAS home Printed from https://ideas.repec.org/p/gms/wpaper/1070.html
   My bibliography  Save this paper

A Functional Approach to Revealed Preference

Author

Listed:
  • Mikhail Freer

    () (ECARES, Universit’e Libre de Bruxelles)

  • Cesar Martinelli

    () (Interdisciplinary Center for Economic Science and Department of Economics, George Mason University)

Abstract

We develop a systematic, functional approach to revealed preference tests based on completing preferences. Our approach is based on the notion of sequential closure, which generalizes the notion of transitive closure. We show that revealed preference tests developed for various decision theories can be seen as special cases of our approach. We also illustrate the approach constructing revealed preference tests for theories of decision under uncertainty whose revealed preference implications had not been studied before.

Suggested Citation

  • Mikhail Freer & Cesar Martinelli, 2018. "A Functional Approach to Revealed Preference," Working Papers 1070, George Mason University, Interdisciplinary Center for Economic Science.
  • Handle: RePEc:gms:wpaper:1070
    as

    Download full text from publisher

    File URL: http://www.gmu.edu/schools/chss/economics/icesworkingpapers.gmu.edu/pdf/1070.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Enrico Diecidue & Ulrich Schmidt & Peter P. Wakker, 2004. "The Utility of Gambling Reconsidered," Journal of Risk and Uncertainty, Springer, vol. 29(3), pages 241-259, December.
    2. Hal R. Varian, 1983. "Non-parametric Tests of Consumer Behaviour," Review of Economic Studies, Oxford University Press, vol. 50(1), pages 99-110.
    3. Matthew Polisson & John Quah & Ludovic Renou, 2015. "Revealed preferences over risk and uncertainty," IFS Working Papers W15/25, Institute for Fiscal Studies.
    4. Forges, Françoise & Minelli, Enrico, 2009. "Afriat's theorem for general budget sets," Journal of Economic Theory, Elsevier, vol. 144(1), pages 135-145, January.
    5. Chambers,Christopher P. & Echenique,Federico, 2016. "Revealed Preference Theory," Cambridge Books, Cambridge University Press, number 9781107087804.
    6. Hiroki Nishimura & Efe A. Ok & John K.-H. Quah, 2017. "A Comprehensive Approach to Revealed Preference Theory," American Economic Review, American Economic Association, vol. 107(4), pages 1239-1263, April.
    7. Bossert, Walter & Sprumont, Yves & Suzumura, Kotaro, 2002. "Upper semicontinuous extensions of binary relations," Journal of Mathematical Economics, Elsevier, vol. 37(3), pages 231-246, May.
    8. repec:bla:ijethy:v:14:y:2018:i:1:p:21-34 is not listed on IDEAS
    9. Demuynck, Thomas, 2009. "A general extension result with applications to convexity, homotheticity and monotonicity," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 96-109, January.
    10. Demuynck, Thomas & Lauwers, Luc, 2009. "Nash rationalization of collective choice over lotteries," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 1-15, January.
    11. Christopher P. Chambers & Federico Echenique & Eran Shmaya, 2014. "The Axiomatic Structure of Empirical Content," American Economic Review, American Economic Association, vol. 104(8), pages 2303-2319, August.
    12. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
    13. W. E. Diewert, 1973. "Afriat and Revealed Preference Theory," Review of Economic Studies, Oxford University Press, vol. 40(3), pages 419-425.
    14. repec:dau:papers:123456789/4099 is not listed on IDEAS
    15. repec:eee:jeborg:v:145:y:2018:i:c:p:202-217 is not listed on IDEAS
    16. Francoise Forges & Enrico Minelli, 2009. "Afriat's theorem for generalized budget sets," Post-Print hal-00360726, HAL.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gms:wpaper:1070. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shams Bahabib). General contact details of provider: http://edirc.repec.org/data/icgmuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.