IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/14345.html
   My bibliography  Save this paper

Szpilrajn-type theorems in economics

Author

Listed:
  • Andrikopoulos, Athanasios

Abstract

The Szpilrajn "constructive type" theorem on extending binary relations, or its generalizations by Dushnik and Miller [10], is one of the best known theorems in social sciences and mathematical economics. Arrow [1], Fishburn [11], Suzumura [22], Donaldson and Weymark [8] and others utilize Szpilrajn's Theorem and the Well-ordering principle to obtain more general "existence type" theorems on extending binary relations. Nevertheless, we are generally interested not only in the existence of linear extensions of a binary relation R, but in something more: the conditions of the preference sets and the properties which $R$ satisfies to be "inherited" when one passes to any member of some \textquotedblleft interesting\textquotedblright family of linear extensions of R. Moreover, in extending a preference relation $R$, the problem will often be how to incorporate some additional preference data with a minimum of disruption of the existing structure or how to extend the relation so that some desirable new condition is fulfilled. The key to addressing these kinds of problems is the szpilrajn constructive method. In this paper, we give two general "constructive type" theorems on extending binary relations, a Szpilrajn type and a Dushnik-Miller type theorem, which generalize and give a "constructive type" version of all the well known extension theorems in the literature.

Suggested Citation

  • Andrikopoulos, Athanasios, 2009. "Szpilrajn-type theorems in economics," MPRA Paper 14345, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:14345
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/14345/1/MPRA_paper_14345.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen A. Clark, 1988. "An extension theorem for rational choice functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 55(3), pages 485-492.
    2. Klaus Nehring & Clemens Puppe, 1998. "Extended partial orders:A unifying structure for abstract choice theory," Annals of Operations Research, Springer, vol. 80(0), pages 27-48, January.
    3. Weymark, John A., 2000. "A generalization of Moulin's Pareto extension theorem," Mathematical Social Sciences, Elsevier, vol. 39(2), pages 235-240, March.
    4. Sholomov, Lev A., 2000. "Explicit form of neutral social decision rules for basic rationality conditions," Mathematical Social Sciences, Elsevier, vol. 39(1), pages 81-107, January.
    5. Sophie Bade, 2005. "Nash equilibrium in games with incomplete preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 309-332, August.
    6. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
    7. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
    8. Walter Bossert & David Donaldson & Charles Blackorby, 1999. "Rationalizable solutions to pure population problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(3), pages 395-407.
    9. Klaus Nehring & Clemens Puppe, 1998. "Extended partial orders:A unifying structure for abstract choice theory," Annals of Operations Research, Springer, vol. 80(0), pages 27-48, January.
    10. repec:bla:econom:v:43:y:1976:i:172:p:381-90 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuta Inoue, 2020. "Rationalizing choice functions with a weak preference," Working Papers 2004, Waseda University, Faculty of Political Science and Economics.
    2. Yuta Inoue, 2020. "Growing Consideration," Working Papers 2003, Waseda University, Faculty of Political Science and Economics.
    3. T. Demuynck, 2009. "Common ordering extensions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/593, Ghent University, Faculty of Economics and Business Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasios Andrikopoulos, 2017. "Generalizations of Szpilrajn's Theorem in economic and game theories," Papers 1708.04711, arXiv.org.
    2. Athanasios Andrikopoulos, 2019. "On the extension of binary relations in economic and game theories," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 277-285, June.
    3. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
    4. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    5. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    6. Athanasios Andrikopoulos, 2019. "A Generalization of Arrow’s Lemma on Extending a Binary Relation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2019, pages 1-6, April.
    7. José Alcantud, 2009. "Conditional ordering extensions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(3), pages 495-503, June.
    8. Peter Caradonna & Christopher P. Chambers, 2023. "A Note on Invariant Extensions of Preorders," Papers 2303.04522, arXiv.org.
    9. T. Demuynck, 2009. "Common ordering extensions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/593, Ghent University, Faculty of Economics and Business Administration.
    10. Peter Caradonna & Christopher P. Chambers, 2024. "Revealed Invariant Preference," Papers 2408.04573, arXiv.org.
    11. Clark, Stephen A., 1995. "Indecisive choice theory," Mathematical Social Sciences, Elsevier, vol. 30(2), pages 155-170, October.
    12. Athanasios Andrikopoulos, 2007. "A representation of consistent binary relations," Spanish Economic Review, Springer;Spanish Economic Association, vol. 9(4), pages 299-307, December.
    13. Franz Dietrich & Christian List, 2013. "Propositionwise judgment aggregation: the general case," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 1067-1095, April.
    14. Regenwetter, Michel & Marley, A. A. J. & Grofman, Bernard, 2002. "A general concept of majority rule," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 405-428, July.
    15. Juho Kokkala & Kimmo Berg & Kai Virtanen & Jirka Poropudas, 2019. "Rationalizable strategies in games with incomplete preferences," Theory and Decision, Springer, vol. 86(2), pages 185-204, March.
    16. repec:ipg:wpaper:2014-060 is not listed on IDEAS
    17. José Alcantud & Gianni Bosi & Carlos Palmero & Magalì Zuanon, 2006. "Mathematical utility theory and the representability of demand by continuous homogeneous functions," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 5(3), pages 195-205, December.
    18. Thomas Schwartz, 2011. "One-dimensionality and stability in legislative voting," Public Choice, Springer, vol. 148(1), pages 197-214, July.
    19. Eric Danan, 2010. "Randomization vs. Selection: How to Choose in the Absence of Preference?," Management Science, INFORMS, vol. 56(3), pages 503-518, March.
    20. Herden, Gerhard & Levin, Vladimir L., 2012. "Utility representation theorems for Debreu separable preorders," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 148-154.
    21. Christopher Tyson, 2013. "Behavioral implications of shortlisting procedures," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(4), pages 941-963, October.

    More about this item

    Keywords

    Consistent binary consistent binary relations; extension theorems; intersection of binary relations;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D60 - Microeconomics - - Welfare Economics - - - General
    • D00 - Microeconomics - - General - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:14345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.