IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/47978.html
   My bibliography  Save this paper

On a Class of Estimation and Test for Long Memory

Author

Listed:
  • Fu, Hui

Abstract

This paper advances a new analysis technology path of estimation and test for long memory time series. I propose the definitions of time scale series, strong variance scale exponent and weak variance scale exponent, and prove the strict mathematical equations that strong and weak variance scale exponent can accurately identify the time series of white noise, short memory and long memory, especially derive the equation relationships between weak variance scale exponent and long memory parameters. I also construct two statistics which SLmemory statistic tests for long memory properties. The paper further displays Monte Carlo performance for MSE of weak variance scale exponent estimator and the empirical size and power of SLmemory statistic, giving practical recommendations of finite-sample, and also provides brief empirical examples of logarithmic return rate series data for Sino-US stock markets.

Suggested Citation

  • Fu, Hui, 2012. "On a Class of Estimation and Test for Long Memory," MPRA Paper 47978, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:47978
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/47978/7/MPRA_paper_47978.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. GIRAITIS, Liudas & KOKOSZKA, Piotr & LEIPUS, Remigijus & TEYSSIÈRE, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," LIDAM Reprints CORE 1594, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    5. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2005. "Corrigendum to "Rescaled variance and related tests for long memory in volatility and levels": [J. Econom. 112 (2003) 265-294]," Journal of Econometrics, Elsevier, vol. 126(2), pages 571-572, June.
    6. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    7. Robinson, P.M., 2005. "Robust Covariance Matrix Estimation: Hac Estimates With Long Memory/Antipersistence Correction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 171-180, February.
    8. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2009. "Two estimators of the long-run variance: Beyond short memory," Journal of Econometrics, Elsevier, vol. 150(1), pages 56-70, May.
    9. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    10. Mohamed Boutahar & Velayoudom Marimoutou & Leila Nouira, 2007. "Estimation Methods of the Long Memory Parameter: Monte Carlo Analysis and Application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(3), pages 261-301.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Hui & Chen, Wenting & He, Xin-Jiang, 2018. "On a class of estimation and test for long memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 906-920.
    2. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    3. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    4. Boutahar, Mohamed & Mootamri, Imène & Péguin-Feissolle, Anne, 2009. "A fractionally integrated exponential STAR model applied to the US real effective exchange rate," Economic Modelling, Elsevier, vol. 26(2), pages 335-341, March.
    5. Lavancier, Frédéric & Philippe, Anne & Surgailis, Donatas, 2010. "A two-sample test for comparison of long memory parameters," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2118-2136, October.
    6. Lujia Bai & Weichi Wu, 2021. "Detecting long-range dependence for time-varying linear models," Papers 2110.08089, arXiv.org, revised Mar 2023.
    7. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Al-Shboul, Mohammad & Alsharari, Nizar, 2019. "The dynamic behavior of evolving efficiency: Evidence from the UAE stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 119-135.
    9. Cho, Cheol-Keun & Amsler, Christine & Schmidt, Peter, 2015. "A test of the null of integer integration against the alternative of fractional integration," Journal of Econometrics, Elsevier, vol. 187(1), pages 217-237.
    10. Walther, Thomas & Klein, Tony & Thu, Hien Pham & Piontek, Krzysztof, 2017. "True or spurious long memory in European non-EMU currencies," Research in International Business and Finance, Elsevier, vol. 40(C), pages 217-230.
    11. Francis Ahking, 2010. "Non-parametric tests of real exchange rates in the post-Bretton Woods era," Empirical Economics, Springer, vol. 39(2), pages 439-456, October.
    12. Assaf, A., 2006. "Dependence and mean reversion in stock prices: The case of the MENA region," Research in International Business and Finance, Elsevier, vol. 20(3), pages 286-304, September.
    13. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    14. Doyle, John R. & Chen, Catherine Huirong, 2012. "A multidimensional classification of market anomalies: Evidence from 76 price indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1237-1257.
    15. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    16. Marinko Škare & Daniel Tomic, 2014. "Examining the Link between Innovation, Productivity and Growth: a Global View," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 606-606, May.
    17. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    18. Yixun Xing & Wayne A. Woodward, 2021. "R-Squared-Bootstrapping for Gegenbauer-Type Long Memory," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 773-790, February.
    19. Assaf, Ata, 2016. "MENA stock market volatility persistence: Evidence before and after the financial crisis of 2008," Research in International Business and Finance, Elsevier, vol. 36(C), pages 222-240.
    20. Cajueiro, Daniel O. & Tabak, Benjamin M., 2008. "Testing for long-range dependence in world stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 918-927.

    More about this item

    Keywords

    Long Memory; Weak Variance Scale Exponent; SLmemory Statistic; Time Scale Series.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:47978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.