IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/46538.html
   My bibliography  Save this paper

Bayesian Approach and Identification

Author

Listed:
  • Kociecki, Andrzej

Abstract

The paper aims at systematic placement of identification concept within Bayesian approach. Pointing to some deficiencies of the standard Bayesian language to describe identification problem we propose several useful characterizations that seem to be intuitively sound and attractive given their potential applications. We offer comprehensive interpretations for them. Moreover we introduce the concepts of uniform, marginal and faithful identification. We argue that all these concepts may have practical significance. Our theoretical development is illustrated with a number of simple examples and one real application i.e. Structural VAR model.

Suggested Citation

  • Kociecki, Andrzej, 2013. "Bayesian Approach and Identification," MPRA Paper 46538, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:46538
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/46538/1/MPRA_paper_46538.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    2. Juan F. Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2010. "Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference," Review of Economic Studies, Oxford University Press, vol. 77(2), pages 665-696.
    3. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    4. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    5. Bowden, Roger J, 1973. "The Theory of Parametric Identification," Econometrica, Econometric Society, vol. 41(6), pages 1069-1074, November.
    6. Ríos-Rull, José-Víctor & Schorfheide, Frank & Fuentes-Albero, Cristina & Kryshko, Maxym & Santaeulàlia-Llopis, Raül, 2012. "Methods versus substance: Measuring the effects of technology shocks," Journal of Monetary Economics, Elsevier, vol. 59(8), pages 826-846.
    7. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters,in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106 National Bureau of Economic Research, Inc.
    8. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    9. Eric M. Leeper & Tao Zha, 2002. "Empirical analysis of policy interventions," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    10. Cooley, Thomas F. & Dwyer, Mark, 1998. "Business cycle analysis without much theory A look at structural VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 57-88.
    11. Gustafson, Paul, 2009. "What Are the Limits of Posterior Distributions Arising From Nonidentified Models, and Why Should We Care?," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1682-1695.
    12. Aart Kraay, 2012. "Instrumental variables regressions with uncertain exclusion restrictions: a Bayesian approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(1), pages 108-128, January.
    13. Poirier, Dale J., 1998. "Revising Beliefs In Nonidentified Models," Econometric Theory, Cambridge University Press, vol. 14(04), pages 483-509, August.
    14. Maddala, G S, 1976. "Weak Priors and Sharp Posteriors in Simultaneous Equation Models," Econometrica, Econometric Society, vol. 44(2), pages 345-351, March.
    15. Edward Barankin, 1960. "Sufficient parameters: Solution of the minimal dimensionality problem," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 12(2), pages 91-118, June.
    16. Christopher A. Sims, 2007. "Thinking about instrumental variables (in Russian)," Quantile, Quantile, issue 2, pages 83-94, March.
    17. Abderrahim Oulhaj & Michel Mouchart, 2003. "Partial sufficiency with connection to the identification problem," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 267-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Piffer, 2016. "Assessing Identifying Restrictions in SVAR Models," Discussion Papers of DIW Berlin 1563, DIW Berlin, German Institute for Economic Research.

    More about this item

    Keywords

    Bayesian; Identification;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46538. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.