IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/36773.html
   My bibliography  Save this paper

A simple axiomatization of the egalitarian solution

Author

Listed:
  • Saglam, Ismail

Abstract

In this paper, we present a simple axiomatization of the n-person egalitarian solution. The single axiom sufficient for characterization is a new condition which we call symmetric decomposition.

Suggested Citation

  • Saglam, Ismail, 2012. "A simple axiomatization of the egalitarian solution," MPRA Paper 36773, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:36773
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/36773/1/MPRA_paper_36773.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Conley, John P. & Wilkie, Simon, 1991. "The bargaining problem without convexity : Extending the egalitarian and Kalai-Smorodinsky solutions," Economics Letters, Elsevier, vol. 36(4), pages 365-369, August.
    2. Kalai, Ehud, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Econometrica, Econometric Society, vol. 45(7), pages 1623-1630, October.
    3. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    4. Trockel, Walter, 2014. "Robustness of intermediate agreements for the discrete Raiffa solution," Games and Economic Behavior, Elsevier, vol. 85(C), pages 32-36.
    5. Thomson, William, 1983. "Problems of fair division and the Egalitarian solution," Journal of Economic Theory, Elsevier, vol. 31(2), pages 211-226, December.
    6. Shiran Rachmilevitch, 2011. "Disagreement point axioms and the egalitarian bargaining solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(1), pages 63-85, February.
    7. Roth, Alvin E, 1979. "Proportional Solutions to the Bargaining Problem," Econometrica, Econometric Society, vol. 47(3), pages 775-777, May.
    8. Myerson, Roger B, 1977. "Two-Person Bargaining Problems and Comparable Utility," Econometrica, Econometric Society, vol. 45(7), pages 1631-1637, October.
    9. Thomson, William, 1984. "Monotonicity, stability and egalitarianism," Mathematical Social Sciences, Elsevier, vol. 8(1), pages 15-28, August.
    10. Myerson, Roger B, 1981. "Utilitarianism, Egalitarianism, and the Timing Effect in Social Choice Problems," Econometrica, Econometric Society, vol. 49(4), pages 883-897, June.
    11. Chun, Youngsub & Thomson, William, 1990. "Egalitarian solutions and uncertain disagreement points," Economics Letters, Elsevier, vol. 33(1), pages 29-33, May.
    12. John Conley & Simon Wilkie, 2012. "The ordinal egalitarian bargaining solution for finite choice sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 23-42, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:decfin:v:40:y:2017:i:1:d:10.1007_s10203-017-0203-y is not listed on IDEAS
    2. Ismail Saglam, 2017. "Iterated Kalai–Smorodinsky–Nash compromise," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 335-349, November.
    3. Saglam, Ismail, 2016. "An Alternative Characterization for Iterated Kalai-Smorodinsky-Nash Compromise," MPRA Paper 73564, University Library of Munich, Germany.

    More about this item

    Keywords

    Cooperative bargaining; egalitarian solution;

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:36773. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.