IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/3499.html
   My bibliography  Save this paper

Exponential Spectral Risk Measures

Author

Listed:
  • Cotter, John
  • Dowd, Kevin

Abstract

Spectral risk measures are attractive risk measures as they allow the user to obtain risk measures that reflect their subjective risk-aversion. This paper examines spectral risk measures based on an exponential utility function, and finds that these risk measures have nice intuitive properties. It also discusses how they can be estimated using numerical quadrature methods, and how confidence intervals for them can be estimated using a parametric bootstrap. Illustrative results suggest that estimated exponential spectral risk measures obtained using such methods are quite precise in the presence of normally distributed losses.

Suggested Citation

  • Cotter, John & Dowd, Kevin, 2007. "Exponential Spectral Risk Measures," MPRA Paper 3499, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:3499
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/3499/1/MPRA_paper_3499.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omid Momen & Akbar Esfahanipour & Abbas Seifi, 2020. "A robust behavioral portfolio selection: model with investor attitudes and biases," Operational Research, Springer, vol. 20(1), pages 427-446, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    2. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    3. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.
    4. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    5. Stelios Bekiros & Nikolaos Loukeris & Iordanis Eleftheriadis & Christos Avdoulas, 2019. "Tail-Related Risk Measurement and Forecasting in Equity Markets," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 783-816, February.
    6. Wyn Morgan & John Cotter & Kevin Dowd, 2012. "Extreme Measures of Agricultural Financial Risk," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 65-82, February.
    7. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    8. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    9. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4/2007), pages 1-22, October.
    10. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    11. Pablo Koch-Medina & Santiago Moreno-Bromberg & Cosimo Munari, 2014. "Capital adequacy tests and limited liability of financial institutions," Papers 1401.3133, arXiv.org, revised Feb 2014.
    12. A. Cherny, 2006. "Weighted V@R and its Properties," Finance and Stochastics, Springer, vol. 10(3), pages 367-393, September.
    13. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    14. Alexander Shapiro, 2013. "On Kusuoka Representation of Law Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 142-152, February.
    15. Omid Momen & Akbar Esfahanipour & Abbas Seifi, 2020. "A robust behavioral portfolio selection: model with investor attitudes and biases," Operational Research, Springer, vol. 20(1), pages 427-446, March.
    16. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    17. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    18. Gregor Dorfleitner, 0. "On the use of the terminal-value approach in risk-value models," Annals of Operations Research, Springer, vol. 0, pages 1-21.
    19. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy & Donald Keenan, 2015. "Cornish-Fisher Expansion for Commercial Real Estate Value at Risk," The Journal of Real Estate Finance and Economics, Springer, vol. 50(4), pages 439-464, May.
    20. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised Aug 2020.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G0 - Financial Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3499. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.