IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/34928.html
   My bibliography  Save this paper

Marginal likelihood calculation for gelfand-dey and Chib Method

Author

Listed:
  • Liu, Chun

Abstract

One advantage of Bayesian estimation is its solid theoretical ground on model comparison, which relies heavily upon the accurate calculation of marginal likelihood. The Gelfand-Dey (1994) and Chib (1995) methods are two popular means of calculating marginal likelihood. A trade-off exists between these two methods. The Gelfand-Dey method is simpler and faster to conduct, while Chib method is more accurate, yet intricate. In this paper, we compare the two methods by their ability to identify structural breaks in a reduced form volatility model. Using the Markov Chain Monte Carlo method, we demonstrate that the performance of the two methods is fairly close. Since the Chib method is normally more di±cult to implement in many econometric problems, it is safe to choose Gelfand-Dey method when calculating marginal likelihood.

Suggested Citation

  • Liu, Chun, 2010. "Marginal likelihood calculation for gelfand-dey and Chib Method," MPRA Paper 34928, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:34928
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/34928/1/MPRA_paper_34928.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 326-360, Summer.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    3. G. M. Martin & C. S. Forbes, 1999. "Using simulation methods for bayesian econometric models: inference, development and communication: some comments," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 113-118.
    4. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    5. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    6. W. E. Griffiths, 1999. "Estimating consumer surplus comments on "using simulation methods for bayesian econometric models: inference development and communication"," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 75-87.
    7. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Model Comparison; Structural Break; Heterogeneous Autoregressive Model; Bayesain Estimation;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:34928. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.