IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1534.html
   My bibliography  Save this paper

Skewed Libor Market Model and Gaussian HJM explicit approaches to rolled deposit options

Author

Listed:
  • Henrard, Marc

Abstract

A simple exotic option (floor on rolled deposit) is studied in the shifted log-normal Libor Market (LMM) and Gaussian HJM models. The shifted log-normal LMM exhibits a controllable volatility skew. An explicit approach is used for both models. Using approximations the price in the LMM is obtained without Monte Carlo simulation. The more precise approximation uses a twisted version of the perdictor-corrector adapted to explicit solutions. The results of the approximation are surprisingly good.

Suggested Citation

  • Henrard, Marc, 2007. "Skewed Libor Market Model and Gaussian HJM explicit approaches to rolled deposit options," MPRA Paper 1534, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1534
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1534/1/MPRA_paper_1534.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marc Henrard, 2005. "Libor Market Model and Gaussian HJM explicit approaches to option on composition," Finance 0511016, EconWPA, revised 07 Dec 2005.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    4. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    5. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    6. Mark Joshi & Alan Stacey, 2008. "New and robust drift approximations for the LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 427-434.
    7. Nielsen, Lars Tyge, 1999. "Pricing and Hedging of Derivative Securities," OUP Catalogue, Oxford University Press, number 9780198776192.
    8. Marc Henrard, 2006. "A Semi-Explicit Approach to Canary Swaptions in HJM One-Factor Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henrard, Marc, 2007. "CMS swaps in separable one-factor Gaussian LLM and HJM model," MPRA Paper 3228, University Library of Munich, Germany.

    More about this item

    Keywords

    Libor Market Model; Heath-Jarrow-Morton; skew; smile; explicit solution; approximation; Bond Market Model; option on composition; existence results;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1534. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.