IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/127158.html

A Shrinkage Factor-Augmented VAR for High-Dimensional Macro–Fiscal Dynamics

Author

Listed:
  • Kyriakopoulou, Dimitra

Abstract

We propose a ridge-regularized Factor-Augmented Vector Autoregression (FAVAR) for forecasting macro–fiscal systems in data-rich environments where the cross-sectional dimension is large relative to the available sample. The framework combines principal-component factor extraction with a shrinkage-based VAR for the joint dynamics of observed macro–fiscal variables and latent components. Applying the model to Greece, we show that the extracted factors capture meaningful real and nominal structures, while the ridge-regularized VAR delivers stable impulse responses and coherent short- and medium-term dynamics for variables central to the sovereign debt identity. A recursive out-of-sample evaluation indicates that the ridge-FAVAR systematically improves medium-term forecasting accuracy relative to standard AR benchmarks, particularly for real GDP growth and the interest–growth differential. The results highlight the usefulness of shrinkage-augmented factor models for macro–fiscal forecasting and motivate further econometric work on regularized state-space and structural factor VARs.

Suggested Citation

  • Kyriakopoulou, Dimitra, 2025. "A Shrinkage Factor-Augmented VAR for High-Dimensional Macro–Fiscal Dynamics," MPRA Paper 127158, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:127158
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/127158/8/MPRA_paper_127158.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory
    • H63 - Public Economics - - National Budget, Deficit, and Debt - - - Debt; Debt Management; Sovereign Debt

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:127158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.