IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/125338.html
   My bibliography  Save this paper

Estimating the R-Star in the US: A Score-Driven State-Space Model with Time-Varying Volatility Persistence

Author

Listed:
  • Pál, Tibor
  • Storti, Giuseppe

Abstract

This paper analyses the dynamics of the natural rate of interest (r-star) in the US using a score-driven state-space model within the Laubach–Williams structural framework. Compared to standard score-driven specifications, the proposed model enhances flexibility in variance adjustment by assigning time-varying weights to both the conditional likelihood score and the inertia coefficient in the volatility updating equations. The improved state dependence of volatility dynamics effectively accounts for sudden shifts in volatility persistence induced by highly volatile unexpected events. In addition, allowing time variation in the IS and Phillips curve relationships enables the analysis of structural changes in the US economy that are relevant to monetary policy. The results indicate that the advanced models improve the precision of r-star estimates by responding more effectively to changes in macroeconomic conditions.

Suggested Citation

  • Pál, Tibor & Storti, Giuseppe, 2025. "Estimating the R-Star in the US: A Score-Driven State-Space Model with Time-Varying Volatility Persistence," MPRA Paper 125338, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:125338
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/125338/1/MPRA_paper_125338.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Bloom & Philip Bunn & Paul Mizen & Pawel Smietanka & Gregory Thwaites, 2025. "The Impact of Covid-19 on Productivity," The Review of Economics and Statistics, MIT Press, vol. 107(1), pages 28-41, January.
    2. Laurence Ball & Sandeep Mazumder, 2011. "Inflation Dynamics and the Great Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 42(1 (Spring), pages 337-405.
    3. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, September.
    4. Thomas Laubach & John C. Williams, 2003. "Measuring the Natural Rate of Interest," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1063-1070, November.
    5. Douglas O. Staiger & James H. Stock & Mark W. Watson, 1997. "How Precise Are Estimates of the Natural Rate of Unemployment?," NBER Chapters, in: Reducing Inflation: Motivation and Strategy, pages 195-246, National Bureau of Economic Research, Inc.
    6. Davide Delle Monache & Ivan Petrella & Fabrizio Venditti, 2021. "Price Dividend Ratio and Long-Run Stock Returns: A Score-Driven State Space Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1054-1065, October.
    7. Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
    8. Jonathon Hazell & Juan Herreño & Emi Nakamura & Jón Steinsson, 2022. "The Slope of the Phillips Curve: Evidence from U.S. States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(3), pages 1299-1344.
    9. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    10. Krustev, Georgi, 2019. "The natural rate of interest and the financial cycle," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 193-210.
    11. Dupraz, Stéphane & Nakamura, Emi & Steinsson, Jón, 2025. "A plucking model of business cycles," Journal of Monetary Economics, Elsevier, vol. 152(C).
    12. Buncic, Daniel, 2024. "Econometric issues in the estimation of the natural rate of interest," Economic Modelling, Elsevier, vol. 132(C).
    13. Blasques, Francisco & Koopman, Siem Jan & Łasak, Katarzyna & Lucas, André, 2016. "In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 875-887.
    14. Blasques, F. & Gorgi, P. & Koopman, S.J., 2019. "Accelerating score-driven time series models," Journal of Econometrics, Elsevier, vol. 212(2), pages 359-376.
    15. Robert J. Gordon, 1998. "Foundations of the Goldilocks Economy: Supply Shocks and the Time-Varying NAIRU," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 29(2), pages 297-346.
    16. Kathryn Holston & Thomas Laubach & John C. Williams, 2023. "Measuring the Natural Rate of Interest after COVID-19," Staff Reports 1063, Federal Reserve Bank of New York.
    17. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
    18. Hamilton, James D., 1986. "A standard error for the estimated state vector of a state-space model," Journal of Econometrics, Elsevier, vol. 33(3), pages 387-397, December.
    19. John C. Williams, 2023. "Measuring the Natural Rate of Interest: Past, Present, and Future," Speech 96178, Federal Reserve Bank of New York.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabinda Basistha & Richard Startz, 2004. "Measuring the NAIRU with Reduced Uncertainty: A Multiple Indicator-Common Component Approach," Working Papers UWEC-2004-22, University of Washington, Department of Economics.
    2. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    3. Jang, Bosung & So, Inhwan, 2024. "Stock returns and monetary policy stance," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 851-869.
    4. repec:hal:wpspec:info:hdl:2441/2005 is not listed on IDEAS
    5. Marie-Elisabeth de la Serve & Matthieu Lemoine, 2011. "Measuring the NAIRU: a complementary approach," Working papers 342, Banque de France.
    6. Ray Fair, 2005. "Natural Concepts in Macroeconomics," Yale School of Management Working Papers amz2527, Yale School of Management, revised 01 Jul 2005.
    7. Aldubyan, Mohammad & Gasim, Anwar, 2021. "Energy price reform in Saudi Arabia: Modeling the economic and environmental impacts and understanding the demand response," Energy Policy, Elsevier, vol. 148(PB).
    8. John C. Williams, 2006. "Robust estimation and monetary policy with unobserved structural change," Economic Review, Federal Reserve Bank of San Francisco, pages 1-16.
    9. Ray Fair, 2005. "Natural Concepts in Macroeconomics," Yale School of Management Working Papers amz2527, Yale School of Management, revised 01 Jul 2005.
    10. Athanasios Orphanides & John C. Williams, 2002. "Robust Monetary Policy Rules with Unknown Natural Rates," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 63-146.
    11. Ray C. Fair, 2005. "Natural Concepts in Macroeconomics," Cowles Foundation Discussion Papers 1525, Cowles Foundation for Research in Economics, Yale University.
    12. Éric Heyer & Frédéric Reynès & Henri Sterdyniak, 2005. "Variables observables et inobservables dans la théorie du taux de chômage d'équilibre. Une comparaison France/États-Unis," Revue économique, Presses de Sciences-Po, vol. 56(3), pages 593-603.
    13. Giacomo Bormetti & Fulvio Corsi, 2021. "A Lucas Critique Compliant SVAR model with Observation-driven Time-varying Parameters," Papers 2107.05263, arXiv.org, revised Feb 2022.
    14. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    15. Hilde Bjørnland & Kai Leitemo & Junior Maih, 2011. "Estimating the natural rates in a simple New Keynesian framework," Empirical Economics, Springer, vol. 40(3), pages 755-777, May.
    16. Giuseppe Ciaburro & Gino Iannace, 2021. "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review," Data, MDPI, vol. 6(6), pages 1-30, May.
    17. repec:spo:wpmain:info:hdl:2441/2005 is not listed on IDEAS
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Andrea Stella & James H. Stock, 2012. "A state-dependent model for inflation forecasting," International Finance Discussion Papers 1062, Board of Governors of the Federal Reserve System (U.S.).
    20. Osoro, Jared & Talam, Camilla, 2025. "Monetary policy at the turn of financial markets: A forerunner or follower?," KBA Centre for Research on Financial Markets and Policy Working Paper Series 89, Kenya Bankers Association (KBA).
    21. Buncic, Daniel, 2024. "Econometric issues in the estimation of the natural rate of interest," Economic Modelling, Elsevier, vol. 132(C).
    22. repec:hal:spmain:info:hdl:2441/2005 is not listed on IDEAS
    23. Dennis Bonam & Peter van Els & Jan Willem van den End & Leo de Haan & Irma Hindrayanto, 2018. "The natural rate of interest from a monetary and financial perspective," DNB Occasional Studies 1603, Netherlands Central Bank, Research Department.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:125338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.