IDEAS home Printed from https://ideas.repec.org/p/par/dipeco/2006-se01.html
   My bibliography  Save this paper

The extremal index for GARCH(1,1) processes with t-distributed innovations

Author

Listed:
  • F. Laurini
  • J. A. Tawn

    ()

Abstract

Generalised autoregressive conditional heteroskedastic (GARCH) processes have wide application in financial modelling. To characterise the extreme values of this process the extremal index is required. Mikosch and Starica (2000) derive the extremal index for the squared GARCH(1,1) process. Here we propose an algorithm for the evaluation of the extremal index and for the limiting distribution of the size of clusters of extremes for GARCH(1,1) processes with t-distributed innovations, and tabulate values of these characteristics for a range of parameters of the GARCH(1,1) process. This algorithm also enables properties of other cluster functionals to be evaluated.

Suggested Citation

  • F. Laurini & J. A. Tawn, 2006. "The extremal index for GARCH(1,1) processes with t-distributed innovations," Economics Department Working Papers 2006-SE01, Department of Economics, Parma University (Italy).
  • Handle: RePEc:par:dipeco:2006-se01
    as

    Download full text from publisher

    File URL: http://swrwebeco.econ.unipr.it/RePEc/pdf/VII_2006-01.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    2. Paola Bortot & Stuart Coles, 2003. "Extremes of Markov chains with tail switching potential," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 851-867.
    3. Borkovec, Milan, 2000. "Extremal behavior of the autoregressive process with ARCH(1) errors," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 189-207, February.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Sebastião & A. Martins & H. Ferreira & L. Pereira, 2013. "Estimating the upcrossings index," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 549-579, November.

    More about this item

    Keywords

    clusters; extreme value theory; extremal index; finance; GARCH; multivariate regular variation;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:par:dipeco:2006-se01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Andrea Lasagni) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/feparit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.