IDEAS home Printed from
   My bibliography  Save this article

Extremal behavior of the autoregressive process with ARCH(1) errors


  • Borkovec, Milan


We investigate the extremal behavior of a special class of autoregressive processes with ARCH(1) errors given by the stochastic difference equationwhere are i.i.d. random variables. The extremes of such processes occur typically in clusters. We give an explicit formula for the extremal index and the probabilities for the length of a cluster.

Suggested Citation

  • Borkovec, Milan, 2000. "Extremal behavior of the autoregressive process with ARCH(1) errors," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 189-207, February.
  • Handle: RePEc:eee:spapps:v:85:y:2000:i:2:p:189-207

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    3. de Haan, Laurens & Resnick, Sidney I. & Rootzén, Holger & de Vries, Casper G., 1989. "Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 213-224, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christopher Withers & Saralees Nadarajah, 2011. "The distribution of the maximum of a first order autoregressive process: the continuous case," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 247-266, September.
    2. Min Chen & Dong Li & Shiqing Ling, 2014. "Non-Stationarity And Quasi-Maximum Likelihood Estimation On A Double Autoregressive Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 189-202, May.
    3. F. Laurini & J. A. Tawn, 2006. "The extremal index for GARCH(1,1) processes with t-distributed innovations," Economics Department Working Papers 2006-SE01, Department of Economics, Parma University (Italy).
    4. Collamore, Jeffrey F. & Vidyashankar, Anand N., 2013. "Tail estimates for stochastic fixed point equations via nonlinear renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 123(9), pages 3378-3429.
    5. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    6. Cline, Daren B.H., 2007. "Regular variation of order 1 nonlinear AR-ARCH models," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 840-861, July.
    7. Klüppelberg, Claudia & Pergamenchtchikov, Serguei, 2007. "Extremal behaviour of models with multivariate random recurrence representation," Stochastic Processes and their Applications, Elsevier, vol. 117(4), pages 432-456, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:85:y:2000:i:2:p:189-207. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.