IDEAS home Printed from https://ideas.repec.org/p/nub/occpap/10.html
   My bibliography  Save this paper

The Swedish Inflation Fan Charts: An Evaluation of the Riksbank?s Inflation Density Forecasts

Author

Abstract

This paper evaluates the inflation density forecasts published by the Swedish central bank, the Sveriges Riksbank. Realized inflation outcomes are mapped to their forecasted percentiles, which are then transformed to be standard normal under the null that the forecasting model is good. Results suggest that the Riksbank?s inflation density forecasts have a skewness problem, and their longer term forecasts have a kurtosis problem as well.

Suggested Citation

  • Kevin Dowd, 2004. "The Swedish Inflation Fan Charts: An Evaluation of the Riksbank?s Inflation Density Forecasts," Occasional Papers 10, Industrial Economics Division, revised 11 Jan 2004.
  • Handle: RePEc:nub:occpap:10
    as

    Download full text from publisher

    File URL: http://www.nottingham.ac.uk/%7Elizecon/RePEc/pdf/10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael P. Clements, 2004. "Evaluating the Bank of England Density Forecasts of Inflation," Economic Journal, Royal Economic Society, vol. 114(498), pages 844-866, October.
    2. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
    3. Kenneth F. Wallis, 2004. "An Assessment of Bank of England and National Institute Inflation Forecast Uncertainties," National Institute Economic Review, National Institute of Economic and Social Research, vol. 189(1), pages 64-71, July.
    4. Eric Leeper, 2003. "An "Inflation Reports" Report," NBER Working Papers 10089, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alquier Pierre & Li Xiaoyin & Wintenberger Olivier, 2014. "Prediction of time series by statistical learning: general losses and fast rates," Dependence Modeling, De Gruyter, vol. 1, pages 65-93, January.
    2. Karolina Tura-Gawron, 2016. "Credibility Of Central Banks Inflation Forecasts," GUT FME Working Paper Series A 37, Faculty of Management and Economics, Gdansk University of Technology.
    3. Tura-Gawron, Karolina, 2019. "Consumers’ approach to the credibility of the inflation forecasts published by central banks: A new methodological solution," Journal of Macroeconomics, Elsevier, vol. 62(C).
    4. Karolina Tura-Gawron, 2016. "What Is The Central Bank Effectively Targeting In Practice? Svensson’S Concept Of Inflation Forecast Targeting And Measures Of Inflation Projections-The Experiences Of Selected European Countries," GUT FME Working Paper Series A 38, Faculty of Management and Economics, Gdansk University of Technology, revised Jul 2016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McDonald, Christopher & Thamotheram, Craig & Vahey, Shaun P. & Wakerly, Elizabeth C., 2015. "Assessing the Economic Value of Probabilistic Forecasts in the Presence of an Inflation Target," EMF Research Papers 09, Economic Modelling and Forecasting Group.
    2. Goodhart Charles A.E., 2005. "The Monetary Policy Committee's Reaction Function: An Exercise in Estimation," The B.E. Journal of Macroeconomics, De Gruyter, vol. 5(1), pages 1-42, August.
    3. Jorge Fornero & Andrés Gatty, 2020. "Back testing fan charts of activity and inflation: the Chilean case," Working Papers Central Bank of Chile 881, Central Bank of Chile.
    4. Knüppel, Malte & Schultefrankenfeld, Guido, 2008. "How informative are macroeconomic risk forecasts? An examination of the Bank of England's inflation forecasts," Discussion Paper Series 1: Economic Studies 2008,14, Deutsche Bundesbank.
    5. Jackson, Emerson Abraham & Tamuke, Edmund, 2018. "Probability Forecast Using Fan Chart Analysis: A case of the Sierra Leone Economy," MPRA Paper 88853, University Library of Munich, Germany, revised 04 Sep 2018.
    6. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    7. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    8. Pär Österholm, 2009. "Incorporating Judgement in Fan Charts," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 387-415, June.
    9. Gianna Boero & Jeremy Smith & Kenneth F. Wallis, 2008. "Uncertainty and Disagreement in Economic Prediction: The Bank of England Survey of External Forecasters," Economic Journal, Royal Economic Society, vol. 118(530), pages 1107-1127, July.
    10. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
    11. Maximiano Pinheiro & Paulo Esteves, 2012. "On the uncertainty and risks of macroeconomic forecasts: combining judgements with sample and model information," Empirical Economics, Springer, vol. 42(3), pages 639-665, June.
    12. Jones, Jacob T. & Sinclair, Tara M. & Stekler, Herman O., 2020. "A textual analysis of Bank of England growth forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1478-1487.
    13. Malte Knüppel, 2015. "Evaluating the Calibration of Multi-Step-Ahead Density Forecasts Using Raw Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 270-281, April.
    14. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    15. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    16. Goodhart, Charles, 2005. "An Essay on the interactions between the Bank of England's forecasts, the MPC's policy adjustments, and the eventual outcome," LSE Research Online Documents on Economics 24665, London School of Economics and Political Science, LSE Library.
    17. Kevin Dowd, 2004. "Too Good to be True? The (In)credibility of the UK Inflation Fan Charts," Occasional Papers 11, Industrial Economics Division, revised 11 Jan 2004.
    18. Gianna Boero & Jeremy Smith & KennethF. Wallis, 2008. "Uncertainty and Disagreement in Economic Prediction: The Bank of England Survey of External Forecasters," Economic Journal, Royal Economic Society, vol. 118(530), pages 1107-1127, July.
    19. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Too many skew normal distributions? The practitioner’s perspective," Discussion Papers in Economics 13/07, Division of Economics, School of Business, University of Leicester.
    20. Casillas-Olvera, Gabriel & Bessler, David A., 2006. "Probability forecasting and central bank accountability," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 223-234, February.

    More about this item

    Keywords

    Inflation density forecasting; Sveriges Riksbank; forecast evaluation;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nub:occpap:10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ienotuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Hoffmann The email address of this maintainer does not seem to be valid anymore. Please ask Robert Hoffmann to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/ienotuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.