IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v1y2013i2013p65-93n4.html

Prediction of time series by statistical learning: general losses and fast rates

Author

Listed:
  • Alquier Pierre

    (University College Dublin, School of Mathematical Sciences)

  • Li Xiaoyin

    (Université de Cergy, Laboratoire Analyse Géométrie Modélisation)

  • Wintenberger Olivier

    (Université Paris-Dauphine, CEREMADE)

Abstract

We establish rates of convergences in statistical learning for time series forecasting. Using the PAC-Bayesian approach, slow rates of convergence √ d/n for the Gibbs estimator under the absolute loss were given in a previous work [7], where n is the sample size and d the dimension of the set of predictors. Under the same weak dependence conditions, we extend this result to any convex Lipschitz loss function. We also identify a condition on the parameter space that ensures similar rates for the classical penalized ERM procedure. We apply this method for quantile forecasting of the French GDP. Under additional conditions on the loss functions (satisfied by the quadratic loss function) and for uniformly mixing processes, we prove that the Gibbs estimator actually achieves fast rates of convergence d/n. We discuss the optimality of these different rates pointing out references to lower bounds when they are available. In particular, these results bring a generalization the results of [29] on sparse regression estimation to some autoregression.

Suggested Citation

  • Alquier Pierre & Li Xiaoyin & Wintenberger Olivier, 2013. "Prediction of time series by statistical learning: general losses and fast rates," Dependence Modeling, De Gruyter, vol. 1(2013), pages 65-93, January.
  • Handle: RePEc:vrs:demode:v:1:y:2013:i:2013:p:65-93:n:4
    DOI: 10.2478/demo-2013-0004
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/demo-2013-0004
    Download Restriction: no

    File URL: https://libkey.io/10.2478/demo-2013-0004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    2. Chopin, Nicolas & Gadat, Sébastien & Guedj, Benjamin & Guyader, Arnaud & Vernet, Elodie, 2015. "On some recent advances in high dimensional Bayesian Statistics," TSE Working Papers 15-557, Toulouse School of Economics (TSE).
    3. Fan, Xiequan & Alquier, Pierre & Doukhan, Paul, 2022. "Deviation inequalities for stochastic approximation by averaging," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 452-485.
    4. Alquier Pierre & Doukhan Paul & Fan Xiequan, 2019. "Exponential inequalities for nonstationary Markov chains," Dependence Modeling, De Gruyter, vol. 7(1), pages 150-168, January.
    5. Mamadou Lamine Diop & William Kengne, 2025. "Statistical learning for $$\psi $$ ψ -weakly dependent processes," Statistical Inference for Stochastic Processes, Springer, vol. 28(2), pages 1-23, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:1:y:2013:i:2013:p:65-93:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.