IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v28y2025i2d10.1007_s11203-025-09329-6.html
   My bibliography  Save this article

Statistical learning for $$\psi $$ ψ -weakly dependent processes

Author

Listed:
  • Mamadou Lamine Diop

    (Université Gaston Berger)

  • William Kengne

    (Universite Claude Bernard Lyon 1)

Abstract

The purpose of this paper is to study the generalization performance of the Empirical Risk Minimization (ERM) algorithm from $$\psi $$ ψ -weakly dependent processes. These processes unify a large class of weak dependence conditions, including strong mixing and association. We first establish the exponential bound on the rate of relative uniform convergence and the consistency of the ERM algorithm. Secondly, we derive generalization bounds and provide the learning rate. Under some Hölder class of hypothesis, we obtain an asymptotic rate close to $$O(n^{-1/2})$$ O ( n - 1 / 2 ) . Finally, we present some application and simulation results with examples of causal models within the context of time series prediction.

Suggested Citation

  • Mamadou Lamine Diop & William Kengne, 2025. "Statistical learning for $$\psi $$ ψ -weakly dependent processes," Statistical Inference for Stochastic Processes, Springer, vol. 28(2), pages 1-23, August.
  • Handle: RePEc:spr:sistpr:v:28:y:2025:i:2:d:10.1007_s11203-025-09329-6
    DOI: 10.1007/s11203-025-09329-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-025-09329-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-025-09329-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Steinwart, Ingo & Hush, Don & Scovel, Clint, 2009. "Learning from dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 175-194, January.
    2. Alquier Pierre & Li Xiaoyin & Wintenberger Olivier, 2014. "Prediction of time series by statistical learning: general losses and fast rates," Dependence Modeling, De Gruyter, vol. 1(2013), pages 65-93, January.
    3. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    4. Doukhan, Paul & Wintenberger, Olivier, 2008. "Weakly dependent chains with infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 1997-2013, November.
    5. J. Dedecker & C. Prieur, 2004. "Coupling for τ-Dependent Sequences and Applications," Journal of Theoretical Probability, Springer, vol. 17(4), pages 861-885, October.
    6. Francq, Christian & Thieu, Le Quyen, 2019. "Qml Inference For Volatility Models With Covariates," Econometric Theory, Cambridge University Press, vol. 35(1), pages 37-72, February.
    7. Doukhan, Paul & Neumann, Michael H., 2007. "Probability and moment inequalities for sums of weakly dependent random variables, with applications," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 878-903, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alquier Pierre & Doukhan Paul & Fan Xiequan, 2019. "Exponential inequalities for nonstationary Markov chains," Dependence Modeling, De Gruyter, vol. 7(1), pages 150-168, January.
    2. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    3. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
    4. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    5. Alain Durmus & Eric Moulines & Alexey Naumov & Sergey Samsonov, 2024. "Probability and Moment Inequalities for Additive Functionals of Geometrically Ergodic Markov Chains," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2184-2233, September.
    6. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    7. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    8. Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
    9. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    10. Nassira Menni & Abdelkader Tatachak, 2018. "A note on estimating the conditional expectation under censoring and association: strong uniform consistency," Statistical Papers, Springer, vol. 59(3), pages 1009-1030, September.
    11. Paul Doukhan, 2012. "Comments on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 447-450, September.
    12. Paul Doukhan & Silika Prohl & Christian Robert, 2011. "Subsampling weakly dependent time series and application to extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 447-479, November.
    13. Doukhan, Paul & Fokianos, Konstantinos & Li, Xiaoyin, 2012. "On weak dependence conditions: The case of discrete valued processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1941-1948.
    14. Demian Pouzo, 2024. "Maximal Inequalities for Empirical Processes under General Mixing Conditions with an Application to Strong Approximations," Papers 2402.11394, arXiv.org, revised Oct 2025.
    15. Fan, Jianqing & Han, Fang & Liu, Han & Vickers, Byron, 2016. "Robust inference of risks of large portfolios," Journal of Econometrics, Elsevier, vol. 194(2), pages 298-308.
    16. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
    17. Doukhan, Paul & Fokianos, Konstantinos & Tjøstheim, Dag, 2012. "On weak dependence conditions for Poisson autoregressions," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 942-948.
    18. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    19. José G. Gómez-García & Jalal Fadili & Christophe Chesneau, 2024. "Learning CHARME models with neural networks," Statistical Papers, Springer, vol. 65(3), pages 1337-1374, May.
    20. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:28:y:2025:i:2:d:10.1007_s11203-025-09329-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.