IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Triple-Consistent Social Choice and the Majority Rule

  • Gilbert Laffond

    ()

    (Laboratoire d'Econometrie, LIRSA)

  • Jean Laine

    ()

    (Murat Sertel Center for Advanced Economic Studies,Istanbul Bilgi University)

We define generalized (preference) domains D as subsets of the hypercube {− 1, 1 } D , where each of the D coordinates relates to a yes-no issue. Given a finite set of n individuals, a profile assigns each individual to an element of D . We prove that the outcome of issue-wise majority voting ϕ m belongs to D at any profile where ϕ m is well-defined if and only if this is true when ϕ m is applied to any profile involving only 3 elements of D . We call this property triple-consistency. We characterize the class of anonymous issue-wise voting rules that are triple-consistent, and give several interpretations of the result, each being related to a specific collective choice problem.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repeck.bilgi.edu.tr/RePEc/msc/wpaper/mscenter_2013_12_TripleCons.pdf
File Function: First version, 2013
Download Restriction: no

Paper provided by Murat Sertel Center for Advanced Economic Studies, Istanbul Bilgi University in its series Working Papers with number 201303.

as
in new window

Length: 12 pages
Date of creation: Mar 2013
Date of revision:
Handle: RePEc:msc:wpaper:201303
Contact details of provider: Web page: http://mscenter.bilgi.edu.tr

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Dokow, Elad & Holzman, Ron, 2010. "Aggregation of binary evaluations," Journal of Economic Theory, Elsevier, vol. 145(2), pages 495-511, March.
  2. G. Laffond & J. Lainé, 2013. "Unanimity and the Anscombe’s paradox," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 21(3), pages 590-611, October.
  3. Bernard Monjardet, 2006. "Acyclic domains of linear orders : a survey," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00130205, HAL.
  4. Tuğçe Çuhadaroğlu & Jean Lainé, 2012. "Pareto efficiency in multiple referendum," Theory and Decision, Springer, vol. 72(4), pages 525-536, April.
  5. BARBERA, Salvador & MASCHLER, Michael & SHALEV, Jonathan, 1998. "Voting for voters: a model of electoral evolution," CORE Discussion Papers 1998022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  6. Jonathan Shalev & Daniel Granot & Michael Maschler, 2003. "Voting for voters: the unanimity case," International Journal of Game Theory, Springer, vol. 31(2), pages 155-202.
  7. Gilbert Laffond & Jean Lainé, 2009. "Condorcet choice and the Ostrogorski paradox," Social Choice and Welfare, Springer, vol. 32(2), pages 317-333, February.
  8. Wilson, Robert, 1975. "On the theory of aggregation," Journal of Economic Theory, Elsevier, vol. 10(1), pages 89-99, February.
  9. Benoît, Jean-Pierre & Kornhauser, Lewis A., 2010. "Only a dictatorship is efficient," Games and Economic Behavior, Elsevier, vol. 70(2), pages 261-270, November.
  10. List, Christian & Pettit, Philip, 2002. "Aggregating Sets of Judgments: An Impossibility Result," Economics and Philosophy, Cambridge University Press, vol. 18(01), pages 89-110, April.
  11. Steven J. Brams & William S. Zwicker & D. Marc Kilgour, 1998. "The paradox of multiple elections," Social Choice and Welfare, Springer, vol. 15(2), pages 211-236.
  12. Laffond, G. & Laine, J., 2006. "Single-switch preferences and the Ostrogorski paradox," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 49-66, July.
  13. Deb, Rajat & Kelsey, David, 1987. "On constructing a generalized ostrogorski paradox: Necessary and sufficient conditions," Mathematical Social Sciences, Elsevier, vol. 14(2), pages 161-174, October.
  14. Marco Scarsini, 1998. "A strong paradox of multiple elections," Social Choice and Welfare, Springer, vol. 15(2), pages 237-238.
  15. Dietrich, Franz, 2006. "Judgment aggregation: (im)possibility theorems," Journal of Economic Theory, Elsevier, vol. 126(1), pages 286-298, January.
  16. Sen, Amartya & Pattanaik, Prasanta K., 1969. "Necessary and sufficient conditions for rational choice under majority decision," Journal of Economic Theory, Elsevier, vol. 1(2), pages 178-202, August.
  17. Dokow, Elad & Holzman, Ron, 2010. "Aggregation of binary evaluations with abstentions," Journal of Economic Theory, Elsevier, vol. 145(2), pages 544-561, March.
  18. Inada, Ken-Ichi, 1969. "The Simple Majority Decision Rule," Econometrica, Econometric Society, vol. 37(3), pages 490-506, July.
  19. Peter C. Fishburn, 2002. "Acyclic sets of linear orders: A progress report," Social Choice and Welfare, Springer, vol. 19(2), pages 431-447.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msc:wpaper:201303. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fatma Aslan)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.