IDEAS home Printed from https://ideas.repec.org/a/spr/sochwe/v32y2009i2p317-333.html
   My bibliography  Save this article

Condorcet choice and the Ostrogorski paradox

Author

Listed:
  • Gilbert Laffond

    ()

  • Jean Lainé

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Gilbert Laffond & Jean Lainé, 2009. "Condorcet choice and the Ostrogorski paradox," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 32(2), pages 317-333, February.
  • Handle: RePEc:spr:sochwe:v:32:y:2009:i:2:p:317-333
    DOI: 10.1007/s00355-008-0325-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00355-008-0325-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merlin, Vincent & Valognes, Fabrice, 2004. "The impact of indifferent voters on the likelihood of some voting paradoxes," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 343-361, November.
    2. List, Christian & Pettit, Philip, 2002. "Aggregating Sets of Judgments: An Impossibility Result," Economics and Philosophy, Cambridge University Press, vol. 18(01), pages 89-110, April.
    3. Steven J. Brams & William S. Zwicker & D. Marc Kilgour, 1998. "The paradox of multiple elections," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(2), pages 211-236.
    4. Marco Scarsini, 1998. "A strong paradox of multiple elections," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(2), pages 237-238.
    5. Laffond G. & Laslier, J. F. & Le Breton, M., 1996. "Condorcet choice correspondences: A set-theoretical comparison," Mathematical Social Sciences, Elsevier, vol. 31(1), pages 59-59, February.
    6. Laffond, Gilbert & Laine, Jean, 2000. "Representation in majority tournaments," Mathematical Social Sciences, Elsevier, vol. 39(1), pages 35-53, January.
    7. Deb, Rajat & Kelsey, David, 1987. "On constructing a generalized ostrogorski paradox: Necessary and sufficient conditions," Mathematical Social Sciences, Elsevier, vol. 14(2), pages 161-174, October.
    8. Josep E. Peris & BegoÓa Subiza, 1999. "Condorcet choice correspondences for weak tournaments," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 217-231.
    9. Begoña Subiza & Josep Peris, 2005. "Condorcet choice functions and maximal elements," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 24(3), pages 497-508, June.
    10. Smith, John H, 1973. "Aggregation of Preferences with Variable Electorate," Econometrica, Econometric Society, vol. 41(6), pages 1027-1041, November.
    11. Steven Brams & D. Kilgour & M. Sanver, 2007. "A minimax procedure for electing committees," Public Choice, Springer, vol. 132(3), pages 401-420, September.
    12. Bhaskar Dutta & Jean-Francois Laslier, 1999. "Comparison functions and choice correspondences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(4), pages 513-532.
    13. Laffond, G. & Laine, J., 2006. "Single-switch preferences and the Ostrogorski paradox," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 49-66, July.
    14. Gilbert Laffond & Jean Lainé & Jean-François Laslier, 1996. "Composition-consistent tournament solutions and social choice functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(1), pages 75-93, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:grdene:v:21:y:2012:i:4:d:10.1007_s10726-010-9226-2 is not listed on IDEAS
    2. Andreas Darmann, 2016. "It is difficult to tell if there is a Condorcet spanning tree," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 93-104, August.
    3. Gilbert Laffond & Jean Lainé, 2014. "Triple-consistent social choice and the majority rule," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 784-799, July.
    4. Tuğçe Çuhadaroğlu & Jean Lainé, 2012. "Pareto efficiency in multiple referendum," Theory and Decision, Springer, vol. 72(4), pages 525-536, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:32:y:2009:i:2:p:317-333. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.