IDEAS home Printed from https://ideas.repec.org/p/mil/wpdepa/2019-04.html
   My bibliography  Save this paper

A Simulation Study for Monotonic Dependence in the Presence of Outliers

Author

Listed:
  • Giancarlo MANZI
  • Ahmed Alsayed

Abstract

This paper aims at examining the performance of a recently proposed measure of dependence – the Monotonic Dependence Coefficient – with respect to classical correlation measures like the Pearson’s product-moment and the Spearman’s rank-order correlation coefficients, using simulated outlier contaminated and non-contaminated datasets as well as a real dataset. The comparison aims at checking how and when these coefficients detect dependence relationships between two variables when outliers are present. Several scenarios are created, contemplating in particular multiple values for the coefficients, multiple outlier contamination percentages, various simulation data patterns, or a combination of these. The basic simulation dataset is generated from a bivariate standard normal distribution. Then, the contaminated data are generated from exponential, power-transformed and lognormal distributions. The main findings tend to favour the Spearman’s rank-order correlation coefficient for most of the scenarios, especially when the contamination is taken into account, whereas MDC performs better than the Spearman’s rank-order correlation coefficient in non-contaminated data.

Suggested Citation

  • Giancarlo MANZI & Ahmed Alsayed, 2019. "A Simulation Study for Monotonic Dependence in the Presence of Outliers," Departmental Working Papers 2019-04, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2019-04
    as

    Download full text from publisher

    File URL: http://wp.demm.unimi.it/files/wp/2019/DEMM-2019_04wp.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Headrick, Todd C. & Sheng, Yanyan & Hodis, Flaviu-Adrian, 2007. "Numerical Computing and Graphics for the Power Method Transformation Using Mathematica," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i03).
    2. Pesaran, M. Hashem & Yamagata, Takashi, 2012. "Testing CAPM with a Large Number of Assets," IZA Discussion Papers 6469, Institute of Labor Economics (IZA).
    3. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.
    4. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    5. Mahul, Olivier, 2002. "Hedging Price Risk in the Presence of Crop Yield and Revenue Insurance," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24881, European Association of Agricultural Economists.
    6. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    7. Emanuela Raffinetti & Pier Alda Ferrari, 2021. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 467-496, April.
    8. Al-Subaihi, Ali A., 2004. "Simulating Correlated Multivariate Pseudorandom Numbers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i04).
    9. Rainer Schlittgen & Marko Sarstedt & Christian M. Ringle, 2020. "Data generation for composite-based structural equation modeling methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 747-757, December.
    10. M. Hashem Pesaran & Takashi Yamagata, 2017. "Testing for Alpha in Linear Factor Pricing Models with a Large Number of Securities," CESifo Working Paper Series 6432, CESifo.
    11. Headrick, Todd C., 2002. "Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 685-711, October.
    12. Steffen Grønneberg & Njål Foldnes, 2017. "Covariance Model Simulation Using Regular Vines," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1035-1051, December.
    13. Alessandro Barbiero & Asmerilda Hitaj, 2020. "Goodman and Kruskal’s Gamma Coefficient for Ordinalized Bivariate Normal Distributions," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 905-925, December.
    14. Doumpos, Michael & Zopounidis, Constantin, 2004. "Developing sorting models using preference disaggregation analysis: An experimental investigation," European Journal of Operational Research, Elsevier, vol. 154(3), pages 585-598, May.
    15. Njål Foldnes & Steffen Grønneberg, 2019. "On Identification and Non-normal Simulation in Ordinal Covariance and Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1000-1017, December.
    16. P Pendharkar, 2009. "Misclassification cost minimizing fitness functions for genetic algorithm-based artificial neural network classifiers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1123-1134, August.
    17. Hakan Demirtas & Robab Ahmadian & Sema Atis & Fatma Ezgi Can & Ilker Ercan, 2016. "A nonnormal look at polychoric correlations: modeling the change in correlations before and after discretization," Computational Statistics, Springer, vol. 31(4), pages 1385-1401, December.
    18. Weathers, Danny & Sharma, Subhash & Niedrich, Ronald W., 2005. "The impact of the number of scale points, dispositional factors, and the status quo decision heuristic on scale reliability and response accuracy," Journal of Business Research, Elsevier, vol. 58(11), pages 1516-1524, November.
    19. Emanuela Raffinetti & Pier Alda Ferrari, 0. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 0, pages 1-30.
    20. Shmueli, Galit & Ray, Soumya & Velasquez Estrada, Juan Manuel & Chatla, Suneel Babu, 2016. "The elephant in the room: Predictive performance of PLS models," Journal of Business Research, Elsevier, vol. 69(10), pages 4552-4564.

    More about this item

    Keywords

    Outliers; Correlation coefficient; Dependence structure; Monte-Carlo Simulation;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2019-04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/damilit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers The email address of this maintainer does not seem to be valid anymore. Please ask DEMM Working Papers to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.