IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v14y2020i4d10.1007_s11634-020-00396-6.html
   My bibliography  Save this article

Data generation for composite-based structural equation modeling methods

Author

Listed:
  • Rainer Schlittgen

    (University of Hamburg)

  • Marko Sarstedt

    (Otto-von-Guericke-University Magdeburg
    Monash University of Malaysia)

  • Christian M. Ringle

    (Hamburg University of Technology
    University of Waikato)

Abstract

Examining the efficacy of composite-based structural equation modeling (SEM) features prominently in research. However, studies analyzing the efficacy of corresponding estimators usually rely on factor model data. Thereby, they assess and analyze their performance on erroneous grounds (i.e., factor model data instead of composite model data). A potential reason for this malpractice lies in the lack of available composite model-based data generation procedures for prespecified model parameters in the structural model and the measurements models. Addressing this gap in research, we derive model formulations and present a composite model-based data generation approach. The findings will assist researchers in their composite-based SEM simulation studies.

Suggested Citation

  • Rainer Schlittgen & Marko Sarstedt & Christian M. Ringle, 2020. "Data generation for composite-based structural equation modeling methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 747-757, December.
  • Handle: RePEc:spr:advdac:v:14:y:2020:i:4:d:10.1007_s11634-020-00396-6
    DOI: 10.1007/s11634-020-00396-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-020-00396-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-020-00396-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Vale & Vincent Maurelli, 1983. "Simulating multivariate nonnormal distributions," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 465-471, September.
    2. Schlittgen, Rainer & Ringle, Christian M. & Sarstedt, Marko & Becker, Jan-Michael, 2016. "Segmentation of PLS path models by iterative reweighted regressions," Journal of Business Research, Elsevier, vol. 69(10), pages 4583-4592.
    3. Sarstedt, Marko & Hair, Joseph F. & Ringle, Christian M. & Thiele, Kai O. & Gudergan, Siegfried P., 2016. "Estimation issues with PLS and CBSEM: Where the bias lies!," Journal of Business Research, Elsevier, vol. 69(10), pages 3998-4010.
    4. Marko Sarstedt & Christian M Ringle & Jun-Hwa Cheah & Hiram Ting & Ovidiu I Moisescu & Lacramioara Radomir, 2020. "Structural model robustness checks in PLS-SEM," Tourism Economics, , vol. 26(4), pages 531-554, June.
    5. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    6. Lu, Irene R.R. & Kwan, Ernest & Thomas, D. Roland & Cedzynski, Marzena, 2011. "Two new methods for estimating structural equation models: An illustration and a comparison with two established methods," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 258-268.
    7. Rainer Schlittgen, 2018. "Estimation of generalized structured component analysis models with alternating least squares," Computational Statistics, Springer, vol. 33(1), pages 527-548, March.
    8. Heungsun Hwang & Yoshio Takane, 2004. "Generalized structured component analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 81-99, March.
    9. Reinartz, Werner & Haenlein, Michael & Henseler, Jörg, 2009. "An empirical comparison of the efficacy of covariance-based and variance-based SEM," International Journal of Research in Marketing, Elsevier, vol. 26(4), pages 332-344.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasquale Dolce & Cristina Davino & Domenico Vistocco, 2022. "Quantile composite-based path modeling: algorithms, properties and applications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 909-949, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Nitzl & Wynne W. Chin, 2017. "The case of partial least squares (PLS) path modeling in managerial accounting research," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 28(2), pages 137-156, May.
    2. Sarstedt, Marko & Radomir, Lăcrămioara & Moisescu, Ovidiu Ioan & Ringle, Christian M., 2022. "Latent class analysis in PLS-SEM: A review and recommendations for future applications," Journal of Business Research, Elsevier, vol. 138(C), pages 398-407.
    3. Marko Sarstedt & Jun-Hwa Cheah, 2019. "Partial least squares structural equation modeling using SmartPLS: a software review," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 196-202, September.
    4. Jun-Hwa Cheah (Jacky) & Francesca Magno & Fabio Cassia, 2024. "Reviewing the SmartPLS 4 software: the latest features and enhancements," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(1), pages 97-107, March.
    5. Hair, Joe F. & Howard, Matt C. & Nitzl, Christian, 2020. "Assessing measurement model quality in PLS-SEM using confirmatory composite analysis," Journal of Business Research, Elsevier, vol. 109(C), pages 101-110.
    6. Theo Dijkstra & Karin Schermelleh-Engel, 2014. "Consistent Partial Least Squares for Nonlinear Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 585-604, October.
    7. Hair, Joseph F. & Astrachan, Claudia Binz & Moisescu, Ovidiu I. & Radomir, Lăcrămioara & Sarstedt, Marko & Vaithilingam, Santha & Ringle, Christian M., 2021. "Executing and interpreting applications of PLS-SEM: Updates for family business researchers," Journal of Family Business Strategy, Elsevier, vol. 12(3).
    8. Dafna Kariv & Carlo Giglio & Vincenzo Corvello, 2025. "Fostering Entrepreneurial intentions: exploring the interplay of education and endogenous factors," International Entrepreneurship and Management Journal, Springer, vol. 21(1), pages 1-27, December.
    9. Osama Sohaib & Kyeong Kang & Mohammad Nurunnabi, 2018. "Gender-Based iTrust in E-Commerce: The Moderating Role of Cognitive Innovativeness," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    10. Max Auerswald & Morten Moshagen, 2015. "Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 920-937, December.
    11. Mohan D. Pant & Todd C. Headrick, 2017. "Simulating Uniform- and Triangular- Based Double Power Method Distributions," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(1), pages 1-1.
    12. Saumyaranjan Sahoo & Ashwani Kumar & Sachin Kumar Mangla & Anurag Tiwari, 2024. "Industry 4.0 adoption and eco‐product innovation capability—Understanding the role of supply chain integration," Business Strategy and the Environment, Wiley Blackwell, vol. 33(8), pages 8798-8814, December.
    13. M. Isabel Sánchez-Hernández & Tomás M. Bañegil-Palacios & Ramón Sanguino-Galván, 2017. "Competitive Success in Responsible Regional Ecosystems: An Empirical Approach in Spain Focused on the Firms’ Relationship with Stakeholders," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    14. Emanuela Raffinetti & Pier Alda Ferrari, 2021. "A dependence measure flow tree through Monte Carlo simulations," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 467-496, April.
    15. Rainer Schlittgen, 2018. "Estimation of generalized structured component analysis models with alternating least squares," Computational Statistics, Springer, vol. 33(1), pages 527-548, March.
    16. Palos-Sanchez, Pedro & Saura, Jose Ramon & Martin-Velicia, Felix, 2019. "A study of the effects of programmatic advertising on users' concerns about privacy overtime," Journal of Business Research, Elsevier, vol. 96(C), pages 61-72.
    17. Gyeongcheol Cho & Christopher Schlaegel & Heungsun Hwang & Younyoung Choi & Marko Sarstedt & Christian M. Ringle, 2022. "Integrated Generalized Structured Component Analysis: On the Use of Model Fit Criteria in International Management Research," Management International Review, Springer, vol. 62(4), pages 569-609, August.
    18. Elahe Kordi Ghasrodashti, 2018. "Explaining brand switching behavior using pull–push–mooring theory and the theory of reasoned action," Journal of Brand Management, Palgrave Macmillan, vol. 25(4), pages 293-304, July.
    19. Huiwen Wang & Shan Lu & Yide Liu, 2022. "Missing data imputation in PLS-SEM," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4777-4795, December.
    20. Joseph F. Hair & G. Tomas M. Hult & Christian M. Ringle & Marko Sarstedt & Kai Oliver Thiele, 2017. "Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods," Journal of the Academy of Marketing Science, Springer, vol. 45(5), pages 616-632, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:14:y:2020:i:4:d:10.1007_s11634-020-00396-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.