IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp3671.html
   My bibliography  Save this paper

Identification of Treatment Effects on the Treated with One-Sided Non-Compliance

Author

Listed:
  • Frölich, Markus

    () (University of Mannheim)

  • Melly, Blaise

    () (Brown University)

Abstract

Traditional instrumental variable estimators do not generally estimate effects for the treated population but for the unobserved population of compliers. They do identify effects for the treated when there is one-sided perfect non-compliance. However, this property is lost when covariates are included in the model. In this case, we show that the effects for the treated are still identified but require modified estimators. We consider both average and quantile treatment effects and allow the instrument to be discrete or continuous.

Suggested Citation

  • Frölich, Markus & Melly, Blaise, 2008. "Identification of Treatment Effects on the Treated with One-Sided Non-Compliance," IZA Discussion Papers 3671, Institute for the Study of Labor (IZA).
  • Handle: RePEc:iza:izadps:dp3671
    as

    Download full text from publisher

    File URL: http://ftp.iza.org/dp3671.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    2. Markus Frölich & Blaise Melly, 2013. "Unconditional Quantile Treatment Effects Under Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 346-357, July.
    3. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    4. Battistin, Erich & Rettore, Enrico, 2008. "Ineligibles and eligible non-participants as a double comparison group in regression-discontinuity designs," Journal of Econometrics, Elsevier, vol. 142(2), pages 715-730, February.
    5. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    6. repec:aph:ajpbhl:1996:86:5:691-695_0 is not listed on IDEAS
    7. Mark M. Pitt & Shahidur R. Khandker, 1998. "The Impact of Group-Based Credit Programs on Poor Households in Bangladesh: Does the Gender of Participants Matter?," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 958-996, October.
    8. James J. Heckman & Lance J. Lochner & Petra E. Todd, 2003. "Fifty Years of Mincer Earnings Regressions," NBER Working Papers 9732, National Bureau of Economic Research, Inc.
    9. Arulampalam, W. & Robin A. Naylor & Jeremy P. Smith, 2002. "University of Warwick," Royal Economic Society Annual Conference 2002 9, Royal Economic Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen G. Donald & Yu-Chin Hsu & Robert P. Lieli, 2010. "Inverse Propensity Score Weighted Estimation of Local Average Treatment Effects and a Test of the Unconfoundedness Assumption," CEU Working Papers 2012_9, Department of Economics, Central European University, revised 11 Aug 2010.
    2. Kaspar Wüthrich, 2014. "A Comparison of two Quantile Models with Endogeneity," Diskussionsschriften dp1408, Universitaet Bern, Departement Volkswirtschaft.
    3. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    4. repec:wly:emetrp:v:85:y:2017:i::p:233-298 is not listed on IDEAS
    5. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.

    More about this item

    Keywords

    instrumental variables; non-compliance; treatment effects; missing data;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp3671. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Fallak). General contact details of provider: http://www.iza.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.