IDEAS home Printed from https://ideas.repec.org/p/isu/genres/12021.html
   My bibliography  Save this paper

Further Results on Bayesian Method of Moments Analysis of the Multiple Regression Model

Author

Listed:
  • Tobias, Justin
  • Zellner, Arnold

Abstract

In this article we extend previous BMOM results by showing how information about a variance parameter and its relation to regression coefficients produces a rich class of postdata densities for regression parameters. Prediction and model selection techniques are also described. We also discuss the well-documented link between cross-entropy and the average log odds and then use this criterion in an experiment to compare results obtained from BMOM and Bayes approaches using data generated from known models.

Suggested Citation

  • Tobias, Justin & Zellner, Arnold, 2001. "Further Results on Bayesian Method of Moments Analysis of the Multiple Regression Model," Staff General Research Papers Archive 12021, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:12021
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    2. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    3. Subramanian, Shankar & Deaton, Angus, 1996. "The Demand for Food and Calories," Journal of Political Economy, University of Chicago Press, vol. 104(1), pages 133-162, February.
    4. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    5. A. Yatchew, 2000. "Scale economies in electricity distribution: a semiparametric analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 187-210.
    6. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    7. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228 Elsevier.
    8. Tobias, J.L., 2000. "Are Return to Schooling Concentrated Among the Most Able? A Semiparametric Analysis of the Ability-Earnings Relationship," Papers 00-01-12, California Irvine - School of Social Sciences.
    9. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    10. Adonis Yatchew, 1998. "Nonparametric Regression Techniques in Economics," Journal of Economic Literature, American Economic Association, pages 669-721.
    11. Blackburn, McKinley L & Neumark, David, 1993. "Omitted-Ability Bias and the Increase in the Return to Schooling," Journal of Labor Economics, University of Chicago Press, vol. 11(3), pages 521-544, July.
    12. Yatchew, A., 1997. "An elementary estimator of the partial linear model," Economics Letters, Elsevier, vol. 57(2), pages 135-143, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scott E. Atkinson & Jeffrey H. Dorfman, 2009. "Feasible estimation of firm-specific allocative inefficiency through Bayesian numerical methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 675-697.
    2. Tack, Jesse, 2013. "A Nested Test for Common Yield Distributions with Applications to U.S. Corn," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 38(1), April.
    3. LaFrance, J. T. & Beatty, T. K. M. & Pope, R. D. & Agnew, G. K., 2002. "Information theoretic measures of the income distribution in food demand," Journal of Econometrics, Elsevier, pages 235-257.
    4. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, pages 347-354.
    5. Carter Richard A. L. & Zellner Arnold, 2004. "The ARAR Error Model for Univariate Time Series and Distributed Lag," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, pages 1-44.
    6. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, pages 29-72.
    7. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, pages 445-468.
    8. Scott Atkinson & Jeffrey Dorfman, 2005. "Multiple Comparisons with the Best: Bayesian Precision Measures of Efficiency Rankings," Journal of Productivity Analysis, Springer, pages 359-382.
    9. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, pages 461-487.
    10. Shen, Edward Z. & Perloff, Jeffrey M., 2001. "Maximum entropy and Bayesian approaches to the ratio problem," Journal of Econometrics, Elsevier, pages 289-313.
    11. Zellner, Arnold, 2006. "S. James Press And Bayesian Analysis," Macroeconomic Dynamics, Cambridge University Press, pages 667-684.
    12. Mulalic, Ismir & Rouwendal, Jan, 2015. "The impact of fixed and variable cost on automobile demand: Evidence from Denmark," Economics of Transportation, Elsevier, vol. 4(4), pages 227-240.
    13. LaFrance, Jeffrey T., 1999. "An Econometric Model of the Demand for Food and Nutrition," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2z5516c2, Department of Agricultural & Resource Economics, UC Berkeley.
    14. Komunjer, Ivana & Ragusa, Giuseppe, 2016. "Existence And Characterization Of Conditional Density Projections," Econometric Theory, Cambridge University Press, vol. 32(04), pages 947-987, August.
    15. Gao, Chuanming & Lahiri, Kajal, 2002. "A note on the double k-class estimator in simultaneous equations," Journal of Econometrics, Elsevier, pages 101-111.
    16. Rodney W. Strachan & Herman K. van Dijk, 2014. "Divergent Priors and Well Behaved Bayes Factors," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 6(1), pages 1-31, March.
    17. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    18. Gao, Chuanming & Lahiri, Kajal, 2002. "A note on the double k-class estimator in simultaneous equations," Journal of Econometrics, Elsevier, pages 101-111.
    19. Zellner, Arnold, 2007. "Some aspects of the history of Bayesian information processing," Journal of Econometrics, Elsevier, pages 388-404.
    20. Komunjer, Ivana & Ragusa, Giuseppe, 2009. "Existence and Uniqueness of Semiparametric Projections," University of California at San Diego, Economics Working Paper Series qt0wg3j51c, Department of Economics, UC San Diego.
    21. Agee, Mark D. & Atkinson, Scott E. & Crocker, Thomas D. & Williams, Jonathan W., 2014. "Non-separable pollution control: Implications for a CO2 emissions cap and trade system," Resource and Energy Economics, Elsevier, vol. 36(1), pages 64-82.
    22. R. A. L. Carter & A. Zellner, 2002. "The ARAR Error Model for Univariate Time Series and Distributed Lag Models," UWO Department of Economics Working Papers 20025, University of Western Ontario, Department of Economics.
    23. Zellner, Arnold, 2010. "Bayesian shrinkage estimates and forecasts of individual and total or aggregate outcomes," Economic Modelling, Elsevier, vol. 27(6), pages 1392-1397, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:12021. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Curtis Balmer). General contact details of provider: http://edirc.repec.org/data/deiasus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.