IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v7y2003i4n2.html
   My bibliography  Save this article

An Information Theoretic Approach for Estimating Nonlinear Dynamic Models

Author

Listed:
  • Golan Amos

    () (American University)

Abstract

Given the objective of estimating the unknown parameters of a possibly nonlinear dynamic model using a finite (and relatively small) data set, it is common to use a Kalman filter Maximum Likelihood (ML) approach, ML-type estimators or more recently a GMM (Imbens, Spady and Johnson, 1998), BMOM (Zellner 1997), or other information theoretic estimators (e.g., Golan, Judge and Miller, 1996). Except for the BMOM, the above ML-type methods require some distributional assumptions while the moment-type estimators require some assumptions on the moments of the underlying distribution that generated the data. In the BMOM approach however, sampling assumptions underlying most ML and other approaches are not employed for the given data. The error terms are viewed as parameters with unknown values.Based on a generalization of the Maximum Entropy (ME), a semi-parametric, Information-Theoretic (IT) framework for estimating dynamic models with minimal distributional assumptions is formulated here. Like the BMOM approach, under this formulation, one views the errors as another set of unknown parameters to be estimated. Thus, for any data set, the estimation problem is ill-posed (under-determined) where the number of unknowns is always greater than the number of data points. The Information-Theoretic approach is one way to estimate the unknown parameters.After developing the basic IT (entropy) model, a computationally efficient concentrated model is developed where the optimization is done with respect to the Lagrange multipliers associated with each observation. The dual concentrated model is used to contrast this IT approach with the more traditional ML-type estimators. Statistics and inference procedures are developed as well. Monte Carlo results for estimating the parameters of noisy, chaotic systems are presented.

Suggested Citation

  • Golan Amos, 2003. "An Information Theoretic Approach for Estimating Nonlinear Dynamic Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-26, December.
  • Handle: RePEc:bpj:sndecm:v:7:y:2003:i:4:n:2
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/snde.2003.7.4/snde.2003.7.4.1174/snde.2003.7.4.1174.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    3. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    4. Golan, Amos, 2002. "Information and Entropy Econometrics--Editor's View," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 1-15, March.
    5. Golan, Amos & Judge, George & Perloff, Jeffrey, 1997. "Estimation and inference with censored and ordered multinomial response data," Journal of Econometrics, Elsevier, vol. 79(1), pages 23-51, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:7:y:2003:i:4:n:2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.